
Assignment of the course
Programming I & II

SCRABBLE PROJECT
VERSION 1.0.0, 29.2.2001

Introduction

Searching is a very common, but tricky task in computer science. The algorithms used for
searching can have a major impact on performance once the number of elements to be handled
gets bigger. The number of elements, the kind of elements, the nature of the collection of ele-
ments that must be searched, the internal data structures used for searching, the available mem-
ory and the underlying hardware are factors that must be taken into account when writing a
search algorithm. In this project, our intention is to show you that finding good searching algo-
rithms (and related sorting algorithms) is of fundamental importance in many cases.

Goal

The goal of the project is to search in a dictionary for words that can be written with a set of
given letters. You will have to implement two different search strategies:

1. Search for all words with the maximal length.

2. Search for all words with the maximal weight. The weight of a word is the sum of the
weights of all its letters. Each letter has a weight, according to the rules of the English
Scrabble game (i.e. ‘z’ has the weight 10, ‘k’ has the weight 5, etc.)

Grading

Grading will be based on correctness, style, and performance. The program you hand in will be
tested thoroughly.

A program that correctly finds all longest words (situation 1) and all words with the highest
weight (situation 2) for all test cases in a finite amount of time (i.e. 15 minutes maximum) will
give you 5 points. If only one situation is handled correctly, then you’ll get 4 points. 1 point will
be given based on programming style and presentation of the code (proper indentation, not more
than 80 characters per line, understandable variable / constant / operation names, appropriate

comments1).

The last point will be given based on performance. The performance of the program will be
determined by measuring the time spent inside the Search_Words_Max_Length /
Search_Words_Max_Weight procedures (see below). The programs will be tested on the
SUN stations in the room CO 021. Measurements will be done using gprof. A ranking will be
established for each test case.

The number of points (a total of 7 points can be obtained) will determine your grade for this
assignment. Each member of the group will receive the same grade.

1. Using the option -gnatg during compilation will enforce good presentation and cor-
rect indentation of the source code.

Groups

4 students together form a group. Groups must be formed and announced until the 30th of
March by sending an email to Xavier.Caron@epfl.ch with the subject: Group for
scrabble project or by telling me directly during the course on Friday.

Dictionary

You have to search for the words in the famous English Webster’s dictionary. The dictionary is
provided in form of a text file that can be found at ~lgl/scrabble/webster.txt. It
contains one single word on each line. No word is composed, and no other characters than ‘a’
to ‘z’ or ‘A’ to ‘Z’ are used (no accentued letters). Beware that the file is formatted for Unix
systems: it means that the characters used for end of lines or end of files may be different from
other systems (such as Windows for example).

All test cases will be executed with this dictionary.

Example Test Cases

This section shows some example test cases that you can use to test your implementation.
Additional test cases will be used during testing, of course.

1. A search for “firstyear” provides the following results:

• 11 longest words (7 letters): terrify - tarrify - strayer - retiary - seriary - astrier - tar-
sier - fratery - strafer - frasier - fraiser

• 3 words with maximal weight (13 points): fratery - tar-
rify - terrify

2. A search for “windowsninetyfive” provides the following results:

• 1 longest word (13 letters): nondefinitive (!!!)

• 1 word with maximal weight (20 points) : nondefinitive

3. A search for “windowsmilleniumedition” provides the following results:

• 1 longest word (13 letters): undimensioned (!!)

• 1 word with maximal weight (19 points) : disendowment

Programming Details

The scrabble program must be written in Ada 95, compilable and executable on the SUN sta-
tions of the rooms CO 020,021,023.

The complete program is split into three packages, Scrabble_Types,
Scrabble_Utilities and the main program Scrabble. You have to implement the
package body of Scrabble_Utilities. You are not allowed to modify the other pack-
ages, or the specification of the package Scrabble_Utilities.

Here is the description of the 6 procedures defined in the specification of the package
Scrabble_Utilities:

• procedure Load;

This procedure is responsible for loading the dictionary into the data structures you
are using. You are allowed to pre-process the dictionary in this procedure, e.g. sort

the words. The time your algorithm takes to load and process the dictionary will not
be measured. Nevertheless, if the pre-processing takes too much time, you are also
allowed to store a pre-processed version of the dictionary, and load this pre-pro-
cessed version in order to increase performance. Of course, you must then also
hand-in the pre-processed version of the dictionary.

• procedure Search_Words_Max_Length (Letters : in String);

This procedure must search for the longest words that can be written with the char-
acters provided in the string Letters. The results you find must be stored in some
data structure. The time spent in this procedure will be measured.

• procedure Search_Words_Max_Weight (Letters : in String);

This procedure searches for all words with maximum weight that can be written
with the characters provided in the string Letters. The words you find must be
stored in some data structure. The time spent in this procedure will be measured.

• procedure Print_Results;

This procedure prints the words found during the last search to the screen. The time
spent in this procedure will not be measured.

• procedure Save_And_CleanUp_Results (File_Name : in String);

This procedure must save the results found during the last search into the file called
File_Name, one word per line, words sorted in alphabetical order. Then, the pro-
cedure should clean up all data structures used by the result. The time spent in this
procedure will not be measured.

• procedure Clean_Up;

This procedure will be called before the application quits. It allows you to clean up
all global data structures (for example free the memory used to store the dictio-
nary). The time spent in this procedure will not be measured.

Here is the complete specification of the package Scrabble_Utilities:

package Scrabble_Utilities is
procedure Load;
procedure Search_Words_Max_Length (Letters : in String);
procedure Search_Words_Max_Weight (Letters : in String);
procedure Print_Results;
procedure Save_And_CleanUp_Results (File_Name : in String);
procedure Clean_Up;

end Scrabble_Utilities;

Here is the specification of the package Scrabble_Types that defines the global types and
the weights of the characters:

with Ada.Unchecked_Deallocation;

package Scrabble_Types is

-- Definition of the weights (English scrabble) given to each letter.
subtype Small_Letters is Character range 'a' .. 'z';
Weights : array (Small_Letters'Range) of Positive :=

('q' => 10, 'z' => 10,
'j' => 8, 'x' => 8,
'k' => 5,
'f' => 4, 'h' => 4, 'v' => 4, 'w' => 4, 'y' => 4,

'b' => 3, 'c' => 3, 'm' => 3, 'p' => 3,
'd' => 2, 'g' => 2,
others => 1); -- "esarintulo" : 10 letters with 1 point each.

-- Definition of a reference type for the Ada standard String type.
type String_Ref is access all String;

-- This procedure allows to free the memory space pointed by the ref.
-- Example: if you have My_String of type String_Ref,
-- call Free (My_String) to free the memory (then My_String is null).
procedure Free is new Ada.Unchecked_Deallocation (String, String_Ref);

end Scrabble_Types;

The file scrabble.adb contains the main procedure of the program. You can use it to test
your implementation of the searching algorithms. We will probably use a different main pro-
gram for testing.

What you know for sure is the following:

1. The main program will first call Load.
2. Then Search_Words_Max_Length or Search_Words_Max_Weight is called.

The time spent in the procedure is measured.
3. The procedure Save_And_CleanUp_Results is called.
4. The procedure Clean_Up is called.

Steps 2 and 3 might be repeated multiple times.

Available Files

The files:

• scrabble_types.ads

• scrabble_utilities.ads

• scrabble.adb

can be found in the folder ~lgl/scrabble_project starting from Friday, 16th of March.
Inside the same folder you will also find a file named webster.txt. It contains the web-
ster’s dictionary used for the project.

Hand-in

You must hand-in the source file scrabble_utilities.adb, that contains the imple-
mentation of the body of the Scrabble_Utilities package. Please don’t modify the
names of the predefined procedures, nor the provided source files. We will use the original
source files when compiling your program for performance measuring.

If you modify the dictionary according to your needs, please don’t send the file (or the files) by
e-mail, but mention in your e-mail the full path of the directory where we can find the files on
the cosuns server. Make sure that the access rights for reading are set correctly for all files and
the directory.

Send the file scrabble_utilities.adb and any auxiliary files you need for your pro-
gram to run Xavier.Caron@epfl.ch by Friday, June 1st. Submissions after the 1st of

June will receive a penalty of 0.5 points per day. The email should have the subject: Scrab-
ble project group x, where x stands for your group number. The body should also con-
tain the compiler flags that we must use to compile your program. If no compiler flags are
specified, the default command will be used:

gnatmake -pg scrabble -largs /soft/lib/gcc-lib/sparc-sun-
solaris2.6/2.7.2.1/gmon.o

Please state also who has implemented what part of the project, so that we can check that the
work has been distributed among the members of the group.

Prize

The winning group will receive a gift check with a value of 400 SFr. The winning group is
determined by comparing the ranks obtained for each test case using the official rules of the
International Skating Union.

Note

Small modifications to this project description or the provided source files are possible during
the first weeks of the project.

