
Mobile Payments

Alok Menghrajani (amenghra@andrew.cmu.edu)

Boris Danev (bdanev@andrew.cmu.edu)

Chuck Szeto (cszeto@andrew.cmu.edu)

Danny Lam (dlam@andrew.cmu.edu)

Kenan Hastor (khastor@andrew.cmu.edu)

November 2002

i Mobile Payment

Abstract

This research project was conducted by five Carnegie Mellon University students,
as part of the “15-494 Web Commerce, Security and Privacy”, a one semester course
taught by Professor Norman Sadeh.

In recent years, mobile phones have become very popular; more recently phone
operators have started investing a lot of money in mobile Internet. However, this new
technology is yet to be fully exploited.

In this project, we covered the technical issues related to developing a complete
payment system over the mobile Internet. Our main challenges were to overcome the
standardization issues related to this emerging technology and to provide end-to-end
security. We tried to scale down the fixed Internet environment into these small devices
which have limited screen size, bandwidth and computation power.

In this report, we covered the historical and business related issues to mobile In-
ternet and mobile payments in particular, as well as the technical issues we were faced
with.

A demonstration of our working implementation using an actual phone was also
presented as part of this research.

Although one of the security aspects had to be disabled for the demonstration, the
results obtained were promising. We were able to get a working solution that utilized
end-to-end security. At times, we felt like pionneers working with primitive tools and
faced with lack of support from the development community.

Contents

1 Introduction 1

2 Overview 2

2.1 Technology . 2

2.1.1 WAP . 2

2.1.2 XHTML & WML . 2

2.1.3 SSL . 2

2.1.4 WAPPUSH . 2

2.2 Goals . 3

2.3 Design . 4

3 Mobile Payments: Standards 6

4 Case Study 7

4.1 Dutch KPN and German E-Plus . 7

4.2 Sonera and Pizza Hut . 8

4.3 MobilPay . 9

4.4 Conclusion . 9

5 Characteristics 11

5.1 Security . 11

5.1.1 Keytool . 11

5.1.2 Openssl . 12

5.2 Simulators . 14

5.2.1 Nokia . 14

5.2.2 Openwave . 14

5.2.3 Ericsson . 14

5.3 Installation: General Overview . 14

5.4 VShop . 15

5.4.1 Description . 15

5.4.2 Database structure . 16

5.4.3 Installation . 17

5.4.4 Testing efforts . 23

5.4.5 Limitations and Possible Improvements 23

5.5 Virtual Banks (Using Red Hat Linux 8.0) 25

5.5.1 Description . 25

5.5.2 Design . 26

5.5.3 Installation . 28

5.5.4 Security . 29

5.5.5 Testing efforts . 30

5.5.6 Limitations and Possible Improvments 31

iii Mobile Payment

6 Interconnections 32
6.1 Overview . 32
6.2 Protocol Detail . 32

6.2.1 SSL . 32
6.2.2 WTLS . 33
6.2.3 WAPPUSH . 33
6.2.4 Installation and Problems encountered 34
6.2.5 Limitations and Possible Improvements 36

6.3 Implementation . 36
6.3.1 Description . 36
6.3.2 Installation and Problems encountered 37
6.3.3 Testing efforts . 37
6.3.4 Limitations and Possible Improvements 37

7 Conclusion 39
7.1 System Strength and Weaknesses . 39

A Appendix 42
A.1 Survey (based on 20 people) . 42

A.1.1 Detailed results . 42
A.2 CD . 45
A.3 Source code for the vshop . 45

A.3.1 Webpages . 45
A.3.2 SQL Queries . 51

A.4 Source code for the virtual banks . 52
A.4.1 Source code of the UserBank WebServer 52
A.4.2 Source code of the VShop WebServer 61

A.5 Source code for the Interconnections . 64
A.5.1 InterServerMsg and subclasses . 64
A.5.2 SSLClient and classes using it . 67
A.5.3 SSLServer, ServerThread and subclasses 69
A.5.4 Other classes used . 72

Listings

1 Index.php . 45
2 Login.php . 45
3 Engine.php . 46
4 Detail.php . 49
5 Buy.php . 49
6 UserLogIn.html . 52
7 UserTestLogIn.jsp . 52
8 UserUserAccount.jsp . 53
9 UserLogOut.jsp . 54
10 conf.jsp . 54
11 UserMobileAccount.jsp . 55
12 MobileTestLogIn . 56
13 UserMobileLogOut.jsp . 57
14 UserConfirmationMobileTransaction.jsp . 57
15 Confirmation OK.jsp . 59
16 UserBankDB.txt . 59
17 VshopLogIn.html . 61
18 VshopTestLogIn.jsp . 61
19 VshopAccount.jsp . 62
20 VshopLogOut.jsp . 63
21 vshopBanqueDB.txt . 63
22 InterServerMsg.java . 64
23 UserPurchaseMsg.java . 64
24 ConfirmationMsg.java . 65
25 BankPaymentMsg.java . 66
26 SSLClient.java . 67
27 testClient.java . 67
28 SSLUserPurchase.java . 68
29 SSLBankPayment.java . 68
30 SSLConfirmation.java . 68
31 SSLServer.java . 69
32 ServerThread.java . 70
33 testServer.java . 71
34 VshopServlet.java . 71
35 CurrentDate.java . 72

“Ericsson estimates that by 2004 there will be around one billion users of mobile tele-
phony and some 600 million mobile Internet subscribers worldwide. The most important
thing that is needed to get all these consumers to start using mobile e-commerce is a stan-
dard, which makes it safe and easy to use.”

Ahrenbring, Ericsson Mobile Communications.

1 Introduction

Over the past decade, mobile phones are becoming increasingly popular. Today, these
devices are equipped with color and higher resolution screens (typically 100x80 pixels with
256 colors). Along with the main manufacturer of these devices such as Sony-Ericsson,
Nokia, Motorolla, new players like Microsoft are coming into the scene.

Mobile Internet has been initiated by phone service providers who invested in upgrading
their existing network in order to support faster connection speeds and connection-less
oriented protocols. Companies such as Yahoo! or CNN have tried to take advantage of
their fixed internet presence to target the mobile Internet audience; but have usually failed
as showed by the Nielsen Norman Group survey. Users have usually complained about the
slow connections, quality of data and bad sign posting. They usually didn’t complain much
about the small display, which proves the mobile phone as a viable solution. We are going
to develop a system where the user overcomes the disadvantages of the mobile internet by
having extra convenience and security. Other advantages of the mobile internet are locality
based services or highly tailored services according to individual needs.

The challenges with supporting trusted transactions over the mobile devices is the lack
of end-to-end security in the earlier protocols. Also, the low computational power of these
devices prevents crytographic algorithms with large inputs from being run. On the other
hand, some mobile devices have smart card slots, and can provide very high security.

2 Overview

2.1 Technology

2.1.1 WAP

Wireless Application Protocal (WAP) is the standard published by the WAP Forum in
order to provide information access protocols to mobile devices. The normal TCP/IP
protocols couldn’t be scaled for the mobile usage due the special needs involved with users
moving from one base station to another.

WAP introduces a WAP Gateway, that connects users with mobile devices to the fixed
Internet.

The first version of the WAP (WAP 1.0) defines a security layer called WTLS (Wireless
Transport Layer Security). This protocol has vulnerability at the gateway level, because
the data must be decrypted and recrypted.

However, the second version of the WAP (WAP 2.0) addresses this problem by using a
wireless profiled TCP and TLS (Transport Security Layer).

2.1.2 XHTML & WML

Authoring for the mobile devices is very different from the fixed Internet. The designers
must always keep in mind the limited size of the display. They must also either write
their pages in WML (Wireless Markup Language) which is a stack based language, or in
XHTML which is a stripped down version of HTML.

2.1.3 SSL

Secure Socket Layer (SSL) is a protocol used to ensure end-to-end security in a client-
server communication. It provides data encryption (using public and private keys), message
integrity (using a message digest), and optional client authentication.

The creation, managment and communication of the public keys require a PKI (public
key infrastructure).

2.1.4 WAPPUSH

A Push message is an unsolicited message sent by a server to a client. The device will
receive the message, even if offline. The message format basically is an XML document,
where all the information for the message is held. This document is encapsulated with
header field content (either WML or HTML depending on which device is obtaining the
push message) which contains configuration information about how the message shall be
received and the settings of the receiving party.

3 Mobile Payment

2.2 Goals

We decided to accomplish four major objectives:

• Design a mobile payment solution
The constraints were to design a fundamental system that could be implemented in
a semester, yet have functionalities that are common with real life mobile payment
solutions.

• Implement the mobile internet servers for our system and provide an easy user inter-
face
Getting each individual component of our system working independently.

• Handling security related issues
Interconnecting all the components. Handling issues regarding key generation and
server certification.

• Successfully demonstrate the working system on a real mobile phone

2.3 Design 4

2.3 Design

Our design is inspired by the SET model for secure credit card transaction. We have
improved the model by having the consumer acknowledge the transaction with his bank.
This is the main reason why we can claim that our system is much more secure than the
credit card. We have made the assumption that the bank and the vshop are going to be able
to communicate with ease. In order to achieve this, we designed our own implementation
for an InterServerMsg system.

These are our major components:

5 Mobile Payment

• Mobile phone
We used a simulator at first, and then a real phone exclusively.

• WAP Gateway
The mobile phone connects through this gateway. This gateway can also forward some
extra information such as the caller-id.

• Vshop
A virtual shop that can be browsed by a mobile phone.

• UserBank
A virtual bank that stores the customer’s account information, and that requests a
confirmation for the transaction.

• VshopBank
A virtual bank that stores the shop’s account information, and tells the shop when
the money is transferred.

A typical transaction scenario:

1. The user connects to the vshop using his mobile phone and browses the catalogue.

2. The user purchases an item and the vshop contacts the user’s bank for payment.

3. The user confirms the transaction with his bank.

4. The UserBank transfers the funds to the VshopBank.

5. The VshopBank sends a clearence to the vshop.

6. The Vshop can proceed to the shipment of the item.

3 Mobile Payments: Standards

Currently, the mobile industry has several different standards. Each of them is trying
to anticipate the mobile commerce future. European Committee for Banking Standards
(ECBS) and the European Telecommunications Standards Institute (ETSI) have signed
a co-operation agreement to increase their efforts with development of standards for the
security of telecommunication and m-commerce. We can also see the Mobile Payment
Forum, which is developed by the main credit cards (MasterCard, Visa, American Express),
and by big mobile service providers (Vodafone and T-Mobile) and DoCoMo and Oracle.
Their objectives are: ”The Mobile Payment Forum is a global, cross-industry organization
dedicated to developing a framework for standardized, secure, and authenticated mobile
commerce using payment card accounts.” (4)

We have also a MeT (Mobile electronic Transaction) forum which have the objectives:
”to further strengthen the framework for secure mobile transactions - the ability to buy
goods and services using a mobile device. MeT Limited Sponsors are Ericsson, NEC, Nokia,
Panasonic, Siemens and Sony Ericsson and currently there are about 50 Associate.” (2)
This Forum whose members include the main players in M-Commerce for handset devices,
show great efforts by trying to set universality for mobile transactions by creating a unique
security standard.

Currently, MeT is co-working on mobile transaction standards with the Mobey Forum;
a global organization with standardization efforts of mobile technology in financial services.
These two organizations discuss banking and financial services industry issues, that will
work with many other industry bodies to cover other aspects of mobile transaction.

Overall, we can conclude that there are many different standardization agencies and
organizations that try to set global standards in mobile services. Every aspect has to be
covered by establishing new standards, where security is the biggest priority issue.

4 Case Study

4.1 Dutch KPN and German E-Plus

In a joint venture, the Dutch KPN and German E-Plus mobile service provider agreed with
the Japanese DoCoMo to introduce DoCoMo’s iMode handset in Europe.

A month after the program was launched, German and Dutch customers were signing
up to this European i-mode at a rate of over a thousand per day. Uwe Bergheim, the
CEO of E-Plus, said that the number of users is within the expected range and that the
company is happy with what it has achieved to date. (6)

Most i-mode handsets, such as the NEC N21i, are selling in Germany for less than the
equivalent of USD 200, which is the standard price for phones with a value-added element.
Bergheim believes that E-Plus’ i-mode pricing is now pitched at such a level as to turn on
customers with the basic charge priced to sell at USD 3 per month. (6)

But the real deal comes down to what customers themselves actually use, outside E-Plus
direct charging. ”The subscription prices are fixed by the content providers themselves”
Bergheim explains. ”Prices vary between 25 cents and USD 2 per month and anyone paying
a content subscription has unlimited use of the service during that month.” (6)

Some content is also free of charge, such as those offered by Deutsche Bahn, the German
railway, Fleurop and UCI-World of Cinema. Sending an email costs a flat rate of 19 cents.
”We are offering over 500 pages of information, services, entertainment and games, right
down to complete timetable information from Deutsche Bahn railways. This is all provided
in real time,” Bergheim stands. Bergheim notes the number of content providers putting
their faith in i-mode is growing rapidly. ”Ultimately the simplicity of i-mode is winning
almost everyone over.” (6)

E-Plus’ early market research shows that I-mode has convinced customers to sign up
for the multimedia mobile offering in a way that WAP in its first generation never did.
80% say they are ”happy” or ”very happy” with the product, according to Bergheim, while
92% of i-mode subscribers are saying they would have no reservations to recommend the
service to their friends. (6)

Many other market partners have also recognized the opportunities offered by mobile
multimedia in combination with E-Plus i-mode. Content providers receive the lion’s share
of subscription revenue, a generous 86%, which Bergheim believes gives them a direct
share in the financial success of I-mode. The remaining 14% of the subscription revenue is
retained by E-Plus. The number of content services on the mobile portal has risen from
60 to 90 over recent weeks, with new providers including famous German brands such as
ADAC, the Postbank and Aral. In the next few weeks, the one hundredth provider is
expected to join, and the providers are expected to include popular German newspaper
titles. (6)

The number of so-called free i-mode sites is also rising continually. Currently, there
are some 700 private homepages registered with E-Plus’ ’mobile-homes’ service. These
free pages are i-mode sites that anyone can write and publish on the internet, accessible
from any i-mode handset by entering a normal internet web address. ’The straightforward
business model of I-mode has great appeal for content providers says Bergheim, ”because

4.2 Sonera and Pizza Hut 8

they can address their customers quickly and under their familiar brand names. The
content offerings are now easy to develop and to match exactly to mobile use.” (6)

According to research by consultancy Jupiter/MMXI, already more money is spent on
mobile content such as ring tones, logos, news and sport than content bought through
the internet via personal computers. By 2006, Jupiter forecasts that European consumers
will be spending in the region of USD 3 billion for content through their cellular phones,
as compared with USD 1.7 billion spent on content via their laptop or desktop personal
computers. (6)

Given such a steady start, Bergheim and his Dutch partners at both KPN and NTT
DoCoMo could be stealing a lot of content from big wireless providers even before WAP
2.0 can take over the reins as a single unified wireless internet content standard. (6)

4.2 Sonera and Pizza Hut

The Finland based mobile service provider Sonera offers their mobile users through a
Mobile Pay system purchasing goods from vending machines, parking meters and fast food
restaurants. The users are then billed at the end on their mobile bill on the purchase they
made. (7)

Currently in Helsinki City three Pizza Hut fast food restaurants are being tested and
evaluated. Basically Pizza Hut offers the consumers to pay their meals in restaurants with
their mobile cell phone. (7)

The process is straight forward where at the restaurant the customer makes a call or
sends an SMS message to a service number that is given to him together with the menu to
activate the mobile payment. The consumer than will immediately receive a confirmation
code back by SMS. After finishing his meal the customer can use his confirmation code for
payment. To settle the payment, the cashier checks the customers code and the amount to
be charged. The customer will receive an SMS as a receipt. The customer will be charged
for all his mobile purchases according to his choice by credit card or as a direct debit. (7)

In order to use this system, the customer has to register for the Sonera Mobile Pay
service, and the customer data is maintained in Sonera Mobile Pay’s payment server. The
merchant uses a system to connect to an open interface to Mobile Pay’s payment server.
Then when the merchant’s system sends a request for payment to the payment server, the
customer data and the payment transaction data are checked, the transaction is either
approved of or rejected, and the data is returned to the merchant’s system. This system
works according to the same principle as approving of a credit card payment in a credit
card company. (7)

Overall, the Sonera Mobile Pay system offers payment solutions for many different
kinds of services by mobile devices. All the interface solutions of Mobile Pay are open, so
that different solutions of different suppliers could be implemented. For example merchant
can implement the charged service or sale channel deployed by a mobile phone in such a
way that Sonera charges a costumer for the products and transfers money to merchants
account.

9 Mobile Payment

4.3 MobilPay

The Austrian German company mobilpay.com offers a payment system via mobile device
that reduces the risk of payment via the Internet to near zero, they claim. The system
started on June 30, 2000. (8)

The system is simple, because the registered merchants offer on their websites ”mobil-
pay” as a payment option. If an (also registered) customer agrees to pay per ”mobilpay,”
his or her mobile phone rings within seconds requesting him to confirm the order via a
PIN. After the customer returns the SMS with the PIN, ”mobilpay” gives the okay. Then
the amount is deducted from the customer’s account. The merchant is ready to deliver.
(8)

At the onset, the fact that merchants and customers need to register with mobilpay.com
seems to limit the company’s potential for growth. Then again, PayPal, who has the same
requirement, is used by over 30% of eBay’s auction sellers, so there may a market for this
type of service. (8)

MobilPay incomes comes from commissions, which indicates that more users would
generate more revenue and secure MobilPay to survive the future. (8)

4.4 Conclusion

After carefully viewing our cases and our survey, we came up with a good business model
for telecom companies that could enable them to get a large share of the market. Overall,
they have the following features:

• serve simply as a carrier providing data transportation services for customers

• increase existing involvement in support services (billing, hosting, dispute resolution,
customer support, etc.)

• move on to other services such as location-based services or financial services (includ-
ing general payment services)

• produce content (such as news) themselves

• become simply a network service provider without own infrastructure

Since pure transport of data is likely to become a commodity business with low margins,
this option does not look very promising. Moving further into customer services promises
much more higher margins. Customer Relations Management (CRM) may be the key to
profitability. However, competitors from other sectors are also well placed to take over part
of the value chain:

• portals

• ISPs

• financial services industry

4.4 Conclusion 10

• content industry

Some of these players might even consider a go-it-alone strategy. In this respect, the
success of NTT DoCoMo’s i-mode looks encouraging for other telecom companies. I-
mode has launched a very successful packet-switched mobile service. It has created its
own portal and offers billing services to the merchants who use the portal. However,
telecom companies are not the only organizations which are integrating vertically. Banks
like Merita Nordbanken have already moved into hosting and building portals. Once a
fully developed wholesale market for 3G capacity has evolved, they could even expand into
mobile telephony (as Virtual Mobile Network Operators). However, given the particular
strengths of each group of players, the formation of strategic alliances is still an option
worth considering.

5 Characteristics

5.1 Security

We tried to create a self certified certificate, that would act as our CA (Certification
Authority), but we weren’t able to find any tool to sign a given certificate. We found a
makeshift using keytool.

5.1.1 Keytool

Keytool is a tool distributed with Java. It allows the user to create keys and certificates,
as well as a keystore (to store the keys) and truststore (to store certificates the user trust).

We created three certificates (one for the vshop, one for the VshopBank and one for
the UserBank), and then put each others’ certificate in the truststore. We used 1024 bits
RSA encryption.

Here are the commands we used:

Example of key creation and certificate generation:

% keytool -genkey -alias vshop cert -keyalg RSA -validity 30 -keystore vshop keystore
Enter keystore password: webcom
What is your first and last name?

[Unknown]: Shop owner
What is the name of your organizational unit?

[Unknown]: Vshop
What is the name of your organization?

[Unknown]: Vshop
What is the name of your City or Locality?

[Unknown]: Pittsburgh
What is the name of your State or Province?

[Unknown]: PA
What is the two-letter country code for this unit?

[Unknown]: US
Is CN=Mobile Payment, OU=Carnegie Mellon, O=webcom, L=Pittsburgh, ST=PA,
C=US correct?

[no]: yes
Enter key password for <vshop cert>

(RETURN if same as keystore password): <CR>

% keytool -export -alias vshop cert -keystore vshop keystore -rfc -file vshop cert.cer
Enter keystore password: webcom
Certificate stored in file <vshop cert.cer>

Example of truststore insertion:

5.1 Security 12

% keytool -import -alias userbank cert -file userbank cert.cer -keystore vshop truststore
Enter keystore password: webcom
Owner: CN=User Banker, OU=UserBank, O=UserBank, L=Pittsburgh, ST=PA, C=US
Issuer: CN=User Banker, OU=UserBank, O=UserBank, L=Pittsburgh, ST=PA, C=US
Serial number: 3de7f214
Valid from: Fri Nov 29 18:02:44 EST 2002 until: Sun Dec 29 18:02:44 EST 2002
Certificate fingerprints:

MD5: 11:95:96:7F:B0:96:40:BC:AD:88:E9:75:84:97:2D:CF
SHA1: 42:2D:BC:EF:F4:E1:10:05:11:6A:A7:46:45:28:F3:CD:D4:1F:C3:CD

Trust this certificate? [no]: yes
Certificate was added to keystore

% keytool -import -alias vshopbank cert -file vshopbank cert.cer -keystore vshop truststore
Enter keystore password: webcom
Owner: CN=Vshop Banker, OU=VshopBank, O=VshopBank, L=Pittsburgh, ST=PA,
C=US
Issuer: CN=Vshop Banker, OU=VshopBank, O=VshopBank, L=Pittsburgh, ST=PA,
C=US
Serial number: 3de7f6b6
Valid from: Fri Nov 29 18:22:30 EST 2002 until: Sun Dec 29 18:22:30 EST 2002
Certificate fingerprints:

MD5: 3B:8D:C8:71:4A:E1:4C:5D:7F:CE:9F:7D:5C:67:BE:E8
SHA1: 95:B8:AB:39:4C:9B:52:E5:8F:FE:F7:FE:1B:65:F3:20:5B:50:C9:A8

Trust this certificate? [no]: yes
Certificate was added to keystore

The truststore can be viewed using the % keytool -list -keystore vshop truststore com-
mand.

5.1.2 Openssl

Openssl is a tool we used to create a certificate signing request (CSR), that we sent to
verisign, in order to get a free verisigned certificate. This unfortunatly didn’t work. We
couldn’t get the free certificate to work with Apache, and a self-certified certificate is not
recognized by the mobile device (see §5.3.3)

Creating the CSR:

13 Mobile Payment

% openssl req -config openssl.cnf -new -out my-server.csr
Using configuration from openssl.cnf
Generating a 1024 bit RSA private key
..
++++++
...........................++++++
writing new private key to ’privkey.pem’
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:
—–
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.
—–
Country Name (2 letter code) :US
State or Province Name (full name) :Pennsylvania
Locality Name (eg, city) :Pittsburgh
Organization Name (eg, company) :Webcom
Organizational Unit Name (eg, section) :Webcom
Common Name (eg, your websites domain name) :alok
Email Address :amenghra@andrew.cmu.edu

Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password :webcom

We then submitted this file to verisign. Since it didn’t work, we then created a self-signed
certificate.

% openssl rsa -in privkey.pem -out my-server.key
read RSA key
Enter PEM pass phrase:
writing RSA key

% openssl x509 -in my-server.csr -out my-server.cert -req -signkey my-server.key -
days 365
Signature ok
subject=/C=US/ST=Pennsylvania/L=Pittsburgh/O=Webcom/OU=Webcom/CN=alok
/Email=amenghra@andrew.cmu.edu
Getting Private key

5.2 Simulators 14

5.2 Simulators

We tried several simulators, but all turned out to have bugs or problems in specific areas.
We were pretty disapointed by these simulator, so we finally work with a real phone only.

5.2.1 Nokia

The Nokia toolkit is one of the best we found. Unfortunately, none of the new phones
were available. The toolkit requires backgrading to Java 1.3, the wappush didn’t work,
the product seemed rushed, the documentation is poor, there are version conflicts and
developer support is poor.

5.2.2 Openwave

Openwave’s toolkit is very simple. There is no way to accept certificates. The only use we
found for this tool is to create screenshots.

5.2.3 Ericsson

This simulator doesn’t have any phone that supports xhtml at all. They have a wappush
though, but it isn’t free.

5.3 Installation: General Overview

For this mobile-payment project, a multi-platform/multi-tiered design utilizing a variety
of technologies was decided in order to test the full functionality and scope that the
project could go onto. With this in mind, a wide variety of software tools has been used
and tried to make the mobile-payment project be a success. All these tools can be found
on the demo CD. The demo simulation will be run under Windows XP. Also, a cvs root
was installed in order to be able to share files and merge the team’s efforts on this project
report.

1.) MOBILE PHONE SDK’s:

A variety of mobile phone software development kits (SDK’s) were downloaded and used
in order to figure out which SDK functionality would be the most beneficial for the
project. Due to problems faced using these applications(as discussed in the
Problems section of this report), the Nokia Development Toolkit 3.1 was
chosen due to ease of use and practicality with WAP functionality. This kit came
with a “perfect” virtual phone (one that’s doesn’t have the same keyboard,
memory and display constaints as a real phone). The download could be found in (
http://portals.devx.com/Nokia/WidgetContainer/6573) and is self-explanatory.

Other mobile phone SDK’s tried were the Sony Ericsson WAP Emulator in
(http://www.ericsson.com/mobilityworld/sub/open/technologies/wap/tools.html

and the OpenWave SDK in

15 Mobile Payment

(http://developer.openwave.com/download/index.html). Both downloads are
also self-explanatory to the user.

2.) SIMULATIONS:

A list of current and latest software that is being used for the virtual banks (vbanks) and
virtual shop (vshop) of this project will later be mentioned in this section. For the virtual
banks and shop, the SSL code was implemented in Java, using the classes found in JDK
1.4 (with JSSE 1.0.2 capability) API downloaded from http://sun.java.com. Keeping
the multi-platform/multi-tiered design in mind, the vbanks and vshop are implemented
differently from each other. The vbanks are using a combination of JSP and Java Servlet
functionality on an Apache Tomcat Server. However, the vshop is using PHP within an
Apache Server.

5.4 VShop

5.4.1 Description

The Vshop is an example of a merchant that is selling goods through a mobile device. Due
to the constain of the small display, the vshop has a very simple catalogue that can be
easily browsed.

The user enters the vshop by entering his phone number and password. In order to
enter the password quickly, the user should use digits only (but is not obliged to). If the
user’s gateway is compatible with our scripts (which can be improved to support most real
wap gateways), the phone number is automatically entered.

The user can then browse a catalogue of products (for an example, we filled the database
with video games and music cds). The user then selects a product and is sent to the bank
to confirm the purchase.

The vshop is powered by an Apache Secure webserver. The dynamic content is gen-
erated using PHP and a MySql database. The content is in xhtml format, which is very
similar to html, but adds constrains such as having to close all the tags and write proper
html header tags. The php files are present in the annexe.

We also installed phpMyAdmin, a set of php files to create and manage mySql
databases. The vshop communicates with the vbanks using secure sockets and java
objects. (PHP is an HTML-embedded scripting language, it stands for PHP: Hypertext

5.4 VShop 16

Preprocessor (Many people are confused by acronyms like this one that are recursive
acronym)).

MySql is a free implementation of the Sql database query language.

5.4.2 Database structure

Here is a detailed description of the database structure and the way it is used in the vshop.
For the complete list of SQL queries used to generate these tables, refer to the annexe.

User information
phoneNo userPwd gateway gateway name autologin bankIP accountNo address

IP Port

The user information is stored in the users table. It is accessed during authentification
and when sending a purchase message to the server. The gatewayIP and gatewapPort fields
were designed for extra security, so that the phoneNo is bound with the gatewayPort. The
autologin is a feature we designed but that represents potential security problems (such as
in the case of tefth) and should be implented in a real world scenario with extreme care.

It is very very important that these fields are verified not to contain any potentialy
dangerous values (such as shell pipes) when entered in the database. Some of these values
are passed to the SSLUserPurchase program via a command line shell. If the name is a
string such as b̈ob — rm -r
ëntire directories can be erased. Had we gotten more time, we would have implemented
proper string checks in the php script (buy.php) that calls exec.

17 Mobile Payment

Catalogue
productID category name price description

category father

The pages generated for the catalogue are based on two tables, products and categories.
The first one gives the actual information about each product (the name, price, description,
etc...), while the second table gives the tree structure of the catalogue, in order to make
naviguation easier.

Transactions
transactionID productID price userID purchase (date) shipment (date)

transactionID transactionID

Once the User decides to buy an item, an entry in the transactions table is created. The
productID and price as saved, since the price might change in the future. The purchase
date is set to the current date. The shipment date is set to zeros (MySql allows a date to
be all zeros, which means year 0000, month 0, day 0, time 00:00:00, which doesn’t make
sense but is often practicle). In case of an error, there will be an entry in the transaction
table, but not in the waiting table. We haven’t decided on any policy in case of error.
Example of actions that could be taken are send email to owner of shop and vbank, save
transaction in a special table and retry later, delete transaction and try creating a new
one, etc... If the connection with the bank succeeds, the transactionID is also added to the
waiting table, which is a queue of items waiting to be confirmed. Once the confirmation
is received, the transactionID is removed from the waiting table and added to the toship
table. No further action is taken, but we could imagine automating the shipment action
or taking some other action.

5.4.3 Installation

I. mySQL 3.23.53
(Ref: http://www.mysql.com)

MySQL is anOpen Source Database, which is designed for speed, power and precision in
heavy-load and critical usage. This sql database is used by the vshop to generate the
catalogue, track what items have been sold, and manage user registration and personnal
information. The download for the binary distribution of this program can be found at
www.mysql.com (mysql 3.23.53-win.zip.)

1. Extract the zip file to directory of choice (C:/mySQL for example)

2. Click on the setup.exe executable and follow the installation instructions.
(Note: All Vshop code was moved to ”mysql/bin” directory)

II. Apache 1.3.27
(Ref: http://httpd.apache.org/docs/windows.html,

5.4 VShop 18

http://httpd.apache.org/docs/conf.html)

Apache is an HTTP server, originally designed for Unix systems. This version of Apache
was designed for use with Microsoft Windows XP, 2000, NT, 98, and 95 systems (Win32).
It includes many frequently requested new features, and has an API that allows it to be
extended to meet users’ needs more easily. The download for the binary distribution of
this program can be found at www.apache.org (apache 1.3.27-win32-x86-no src.zip).

Installation for Windows:

Once the Apache Program is unzipped, run the install executable and the setup process
will prompt for:

1. Whether or not to run Apache for all users (installing Apache as a service), or if in
a console window when you choose the Start Apache shortcut.

2. User’s Server name, Domain name and administrative email account.

3. The directory to install Apache into (the default is ”C:\Apache Group\Apache\”,
although this can be changed to any other directory desired)

4. The installation type. The ”Complete” option installs everything while the ”Custom”
install gives the option to choose not to install the documentation, or the source code.

During the installation, Apache will configure the files in the conf directory for the
chosen installation directory. However if any of the files in this directory already exist
they will not be overwritten. Instead the new copy of the corresponding file will be left
with the extension .default.conf.

Also, if you already have a file called ”htdocs\index.html” then it will not be
overwritten (no ”index.html.default” file will be installed either). This should mean it
is safe to install Apache over an existing installation (but the existing server running
needs to be stopped before doing the installation, and the new one will need to be started
after the installation is finished).

After installing Apache, edit the configuration files in the conf directory as required.
These files will be configured during the install ready for Apache to be run from the
directory where it was installed, with the documents served from the subdirectory
htdocs. There are lots of other options which should be set before you start really using
Apache. However to get started quickly, the files should work as installed.

If the user wants to uninstall Apache, the configuration and log files will not be removed.
The installation directory needs to be manually deleted if the value of the configuration
and other web files in it are not important.

19 Mobile Payment

Configuration for Windows:
(Ref: http://www.modssl.org/contrib/)

For the scope of this project, SSL functionality will need to be installed in the Apache
server for the interconnections between the vshop and the vbank. For Mod ssl

1. Go to website ”http://www.modssl.org/contrib”, and download
Apache X-mod ssl Y-openssl Z-WIN32[-i386].zip

2. Unzip to a new directory. Copy the files ”ssleay32.dll” and ”libeay32.dll” from the
Apache/modssl distribution directory to the Window’s System32 directory.

3. Additionally, a config file for ”OpenSSL.exe” will be needed. This can be found in
”http://tud.at/programm/openssl.cnf ”. Copy it to the directory ”openssl.exe”
is in and overwrite the file.

The main configuration file for the Apache server, and for the scope of this project, is
”httpd.conf ” (found in the conf directory in the directory of your Apache installation
folder). The ”httpd.conf ” file needs to be modified to support php with xhtml files. The
lines for this file that NEED to be changed for this project, in sequential order, are:

”Section 1: Global Environment” :

1. ServerRoot location where location is the location of the Apache installation
directory where all the files are. (eg: ServerRoot ”C:\Apache Group\Apache”)

2. Port 80 → #Port 80 (Comment it out; Port is not necessary). Add in Listen 80.

3. Add in Listen 443 (443 is the socket that SSL connections are used).

4. Add in the line: LoadModule ssl module modules/mod ssl.so after all the other Load-
Module lines in the ”httpd.conf ” file.

5. Add in the line: AddModule mod ssl.c after all the other AddModule lines in the
”httpd.conf ” file.

”Section 2: Main server configuration” :

1. ServerAdmin * → where * is the default email address, otherwise leave blank. (eg:
ServerAdmin dlam@andrew.cmu.edu)

2. ServerName * → where * is the domain name or IP address of the localhost
machine. (eg: ServerName 127.0.0.1) (Note: For the vshop, the machine
name host is alok.wv.cc.cmu.edu. For the vbank, the machine name host
isurlin.wv.cc.cmu.edu. Both machines are registered at the CMU wireless
network which can be done at ”www.cmu.edu/myandrew/netreg”).

5.4 VShop 20

3. DocumentRoot ”*”→ where * is the directory where the Apache server is serving the
user’s documents. (eg: DocumentRoot ”C:\Apache Group\Apache\htdocs”)

Add the following to the end of ”httpd.conf ”:

see http://www.modssl.org/docs/2.4/ssl reference.html for more info

SSLMutex sem

SSLRandomSeed startup builtin

SSLSessionCache none

SSLLog logs/SSL.log

SSLLogLevel info

You can later change "info" to ’’warn’’ if everything is OK

<VirtualHost www.my-server.dom:443>

SSLEngine On

SSLCertificateFile conf/ssl/my-server.cert

SSLCertificateKeyFile conf/ssl/my-server.key

</VirtualHost>

where ”www.my-server.dom” is the name of the machine host for Apache.

Once these primary configurations are set, restart the Apache server again and the
program should reset these new settings.

Testing for Windows:

If there is trouble starting the Apache server, either as a service or a console application,
use these methods to isolate the problem.

Run the ”Command Prompt” from the Start Menu on the Programs list. Change to the
folder to which you installed Apache and type the command apache. Read the error
message and review the ”error.log” file for configuration mistakes. If the defaults were
accepted during installation, the commands would be:

>c:

> cd ’’\Apache group\Apache’’
> apache

Wait for Apache to exit, or press Ctrl+C

> more <logs\error.log

The error.log would give a good indication of where and what the configuration
mistakes are in order to be fixed.

21 Mobile Payment

After the Apache server is started and running (either in a console window or as a
service), the default port that it will be set to is 80 (the port address can be changed in
the Apache configuration files). To connect to the server and access the default page,
launch a browser and enter this URL: http://localhost/ or http://127.0.0.1/.

This should respond with a welcome page, and a link to the Apache manual. If nothing
happens or you get an error, look in the ”error.log” file in logs the directory. Once your
basic installation is working, you should configure it properly by editing the files in the
conf directory. Because Apache can’t share the same port with another TCP/IP
application, certain services may need to be stopped or uninstalled first.

III. PHP 4.2.3
(Ref: www.php.net)

PHP is a widely-used general-purpose scripting language that is suited for Web
development and can be embedded into HTML.

This is a layer that comes on top of apache web server that allows server side scripting.
From the PHP homepage (www.php.net), download the PHP binary distribution
(php-4.2.3-Win32.zip). Extract the distribution files to a directory (C:\PHP\ for
example). For the purpose of the project, the installation was done not using an
executable, but instead configuring the installation files manually in order to guaranteed
the full functionality of Apache server with PHP. Refer to the ”install.txt” document
from the PHP installation for further details.

PHP Installation:

Copy the ”php.ini-dist” file from the installation to the %SYSTEMROOT% directory
under Windows NT, Windows 2000 or Windows XP and rename it to ”php.ini”. The
%SYSTEMROOT% directory is typically:
C:\winnt or C:\winnt40 for NT/2000/XP servers

Editing ”php.ini” for the Apache Server:

1. In the ”php.ini” file, set the doc root to point to the default Apache document
directory (eg: doc root = C:/Apache Group/Apache/htdocs).

2. Add these lines to the ”httpd.conf ”file in the Apache server to their respective place:

LoadModule php4 module c:/php/sapi/php4apache.dllAddModule

mod php4.cAddType application/x-httpd-php .php

(a) Note: Add EACH line in sequential order in their respective place. eg: (*
indicates that these lines are already found in the ”httpd.conf ” file during

5.4 VShop 22

Apache installation) In the actual ”httpd.conf ” file, (Section 1: Global
Environment), the user will find lines like this:

* LoadModule . . .
LoadModule . . . * → end of already set Apache server settings

The user will add: LoadModule php4 module
c:/php/sapi/php4apache.dll right after the already set Apache server
settings. The same concept applies for the other two respective lines
(AddModule and AddType).

(b) ”c:/php/sapi/php4apache.dll” in the LoadModule line should be the default di-
rectory of where the ”php4apache.dll” file is kept.

3. For saving sessions in php with Apache,

(a) Set the ”session.save path” line in ”php.ini to a default temp directory
(C:/temp for example). eg: session.save path = ”C:/temp”

(b) Set the ”register globals” variable in ”php.ini” to ON eg: register globals =
ON

Testing PHP on Apache Server:

1. Once editing is done, restart the Apache server. In the htdocs directory of your
Apache installation directory, open a text file and name it phpinfo.php.

2. In this file, put in: <? Phpinfo() ?> and save it.

3. Open a Web browser and type http://localhost/phpinfo.php

The output of the ”phpinfo.php” script should be a long page full of system and
environment information. (Note: For the Apache server to detect and run php script
pages, they all need to be placed in the htdocs directory of the Apache installation
directory.)

IV. phpMyAdmin 2.3.3
(Ref: www.php.net)

phpMyAdmin is intended to handle the administration of MySQL over the web, using
built in php scripts found in the installation zip file (phpMyAdmin-2.3.3-rc1-php.zip).

1. Extract files to the htdocs directory of the Apache installation directory (files should
be a series of php pages)

23 Mobile Payment

2. Modify ”config.inc.php”Set on line 73:
$cfg[’Servers’][$i][’password’] = ’’; → \cfg[’Servers’][$i][’password’] =

’root’;
This will detect that the password will be ”root”, or whatever the user wishes the
password to be for this installation.

3. Set the following environment variable CLASSPATH:(In windows, go to →
My Computer-(right click)-properties-Advanced-Environment
Variables-(add)) Set to:
CLASSPATH = .;c:\j2sdk1.4.1 01\jre\lib (Note: the . is very important!)

V. mySQL Connector/J 2.0.14
(Ref: http://www.mysql.com)

A JDBC driver for Java to function along with mySQL database. The download
for the binary distribution of this program can be found at www.mysql.com
(mysql-connector-java-2.0.14.zip).

1. Extract zip file to directory of choice (C:/jconnector for example)

2. Set the following environment variable CLASSPATH:(In windows, go to →
My Computer-(right click)-properties-Advanced-Environment
Variables-(add)) Set to:
CLASSPATH = .;c:\j2sdk1.4.1 01\jre\com (Note: the . is very important!)

5.4.4 Testing efforts

Since the vshop was the first working entity we had, it has been intensivly tested. The
vshop was also used to make sure that the interconnections code was working.

We simulated network latency (by adding sleeps in the java server code), and besides
php that requires a timeout for the script (currently set to 30 seconds) there are no problems
with the risk of forwarding the user to the bank’s page before the purchase message arrives.

Our tests also focused on data transmission, connection concurrency, database queries.
Due to the number of such tests and the evolution of our system over time, it is impossible
for us to write a detailed report. We didn’t encounter any major problems, and we fixed
all minor problems.

A few test files are available in the vshop/tests directory.

5.4.5 Limitations and Possible Improvements

The vshop is very simple and can be improved in many places. For example, a stock
tracking system could be included.

Users are currently directly registered in the database. User registration and user profile
pages must be created.

5.4 VShop 24

Currently transactions that are not confirmed are left in the waiting forever. An im-
provment would be to support the broadcast and handling of a reject message. A timeout
should perhaps also be used for messages not confirmed after a certain number of days.
Here the action to take might depend on what the show owner wants to do.

25 Mobile Payment

5.5 Virtual Banks (Using Red Hat Linux 8.0)

5.5.1 Description

In order to make a fully realistic mobile payment system, we developped two virtual banks:

• User Bank

• Vshop Bank

The User Bank is the the bank of the client who will browse the Vshop Web Site with his
personal trusted device.It offers two special services:

• Secure Web Portal

• Secure Mobile Payment Confirmation Portal

In order to make a fully realistic mobile payment system, we developped two virtual banks:

• User Bank (represents the client side)

• Vshop Bank (represents the vshop side)

The User Bank is the the bank of the client who will browse the Vshop Web Site with his
personal trusted device.It offers two special services:

• Secure Web Portal

• Secure Mobile Payment Confirmation Portal

The Secure Web Portal was done with the only purpose to test the correctness of the
mobile payment system (client side).It provides a web portal where the client can log in
and check all his transactions.Once he finished , he can securely log out.The client can
navigate through the portal web pages thanks to sessions.The portal uses SSL connection
to the User Bank Web server in order to provide maximum security.

The Secure Mobile Payment Confirmation Portal operates only on the personal trusted

5.5 Virtual Banks (Using Red Hat Linux 8.0) 26

device(PTD) of the client. It provides a small user friendly interface written in XHTML ,
where the client after having made a purchase on the vshop , can confirm it or not. If he
confirms his transaction, the Mobile Departement will take care to withdraw the amount
of the purchase from the client’s account and then send it to the Vshop Bank using
secure SSL connection.

The Vshop Bank provides only two special services:

• Secure Web Portal

• Confirmation Notification

The Secure Web Portal was done with the only purpose to test the correctness of the
mobile payment system (vshop side).The Vshop Secure Web Portal provides a simple
interface where the an authorized representative of the Vshop can check its account and
transactions. The Vshop Bank has also a Confirmation Notification service which consists
in sending a confirmation message to the Vshop that it received the amount of money for
a given transaction. Transactions have unique ids and the Vshop knows exacly which
client has made a purchase. After having received the Confirmation Notification, the
Vshop can proceed shipping the product.

5.5.2 Design

The User Bank has two major design components along with a database system:
User Bank Server and User Bank Web Server. The User Bank Server deals with receiving
transaction messages from outside, distinguish between different types of transactions and
stores the information in a particular place of the its database system , depending on the

27 Mobile Payment

type of message received. In our case , the User Bank can recognize only one type of
message and it is the SSLUserPurchaseMsg Object , which is sent when a client of the
User Bank has made a purchase with his personal trusted device. All other messages are
ignored. Important point about receiving the SSLUserPurchaseMsg is that the User Bank
has in its certificate truststore the certificate of Vshop , which enables the User Bank to
perform authentication of the message (see Section Security for information about the
recognized certificates of the User Bank)
The User Bank Web Server deals with all the web based part of the User Bank.It gives a
web access to client’s account and possibilty to confirm a purchase. One important role
of the User Bank Web Server is that it is in charge of sending the SSLBankPaymentMsg
upon confirmation. The SSLBankPaymentMsg Object contains all the information needed
by the Vshop Bank in order to update the Vshop account. An SSLBankPaymentMsg is
sent to the Vshop Bank if and only one the client who has made a purchase on the Vshop
confirms it.
The Database system of the User Bank contains the followng SQL tables:

• table USERUSERS (special purpose : authentification when log in)

• table USERACCOUNT (purpose: all account information of a given client)

• table USERTRANSACTIONS(purpose: all the transactions of clients)

• table USERMOBILEPAYMENTS(special purpose: all mobile transactions are stored
here waiting for confirmation)

The Vshop Bank has similar two major design components:Vshop Bank Server and Vshop
Bank Web Server along with its database system.
The Vshop Bank Web Server has no special services a part from the standart service to
retrieve account information upon log in. The Vshop Bank Server deals with receiving
transaction messages from outside. In our case it can receive only one special message
called the SSLBankPaymentMsg. all other messages are ignored. Once it receives an
SSLBankPaymentMsg, the server proceeds in authentication checking its own certificate
truststore (see Section Security for information about the recognized certificates of the
Vshop Bank)If the authentication succeed the Vshop Bank Server updates the Vshop
account using the information provided by the SSLBankPaymentMsg and then executes
his special service Confirmation Notification, sending a SSLConfirmationMsg to the Vshop
Server The Database system of the Vshop Bank is simpler and contains almost the same
structure:

• table VSHOPUSERS (special purpose : authentification when log in)

• table VSHOPACCOUNT (purpose: all account information of a given vshop)

• table VSHOPRANSACTIONS(purpose: all the transactions of vshops)

For more details about the implementation of the User Bank and the Vshop Bank, please
refer to the Appendix Section A.2 where we present a commented JSP/JAVA code of the
User Bank and Vshop Bank and their SQL Database Systems

5.5 Virtual Banks (Using Red Hat Linux 8.0) 28

5.5.3 Installation

I. Tomcat 4.1.12
(Ref: http://jakarta.apache.org/tomcat/index.html)

Tomcat is the servlet container that is used in the official Reference Implementation for
the Java Servlet 2.3 and JavaServer Pages 1.2 (JSP) technologies. This application is an
extension/modification of the Apache server. The Java Servlet and JavaServer Pages
specifications are developed by Sun under the Java Community Process.

1. Setup in Linux:
(Ref: http://jakarta.apache.org/tomcat/tomcat-4.1-doc/RUNNING.txt)

(a) Download a binary distribution of Tomcat from:
http://jakarta.apache.org/builds/jakarta-tomcat-4.0/nightly/

(b) On a Unix platform, the following distribution file will be needed:
jakarta-tomcat-4.0-YYYYMMDD.zip

(c) Unpack the binary distribution into a convenient location so that the distribu-
tion resides in its own directory (”jakarta-tomcat-4.0” for example).

(d) Execute the following shell commands to start the Tomcat server:
>cd $HOME\bin (Unix) > ./startup.sh (Unix)

(e) Execute the following shell commands to shut the Tomcat server:
>cd $HOME/bin (Unix) > ./shutdown.sh (Unix)

where $HOME is the directory where the Tomcat server is installed.

2. Testing:

(a) After startup, the default web applications included with this server will be
available by browsing: http://localhost:8080/

3. Configuring SSL connection:

(a) Create a certificate keystore by executing the following command:
In Unix: > $JAVA HOME/bin/keytool -genkey -alias tomcat -keyalg RSA

and specify a password.

(b) Uncomment the ”SSL HTTP/1.1 Connector” entry in:
$HOME/conf/server.xml and tweak as necessary.
(Note: $HOME is the directory of where the Tomcat installation is)

(c) Include the keystorePass tag in the connector entry, because a different
keystore and password is being used instead of the default one. eg: (In

29 Mobile Payment

server.xml)

<-- Define an SSL HTTP/1.1 Connector on port 8443 --> <!-- <Connector

className="org.apache.catalina.connector.http.HttpConnector"

port="8443" minProcessors="5" maxProcessors="75" enableLookups="true"

keystorePass acceptCount="10" debug="0" scheme="https" secure="true">

<Factory className="org.apache.catalina.net.SSLServerSocketFactory"

clientAuth="false" protocol="TLS"/> </Connector> -->

4. Disabling the firewall on Linux:

(a) There is a default firewall built in and activated with Red Hat Linux 8.0,
which prohibits communication between applications from different mediums.
In one scenario, the vshop could not communicate from one laptop to the
vbanks on another laptop due to the firewall. To disengage the default firewall:
On Linux command prompt : >cd /etc/init.d/ >./iptables stop

II. Oracle 8i Database
(Ref: http://www.oracle.com/ip/deploy/database/8i/index.html?content.html)

The Oracle8i database is used due to the power and ease for internet development and
deployment. It is also compatible with many different platforms and applications,
including Linux and Tomcat Apache server. All setup was done from the Oracle 8i
installation CD (typical setup).

5.5.4 Security

Trusted certificates for the User Bank and the Vshop Bank

% keytool -list -keystore userbank truststore
Enter keystore password: webcom

Keystore type: jks
Keystore provider: SUN

Your keystore contains 2 entries

vshopbank cert, Nov 29, 2002, trustedCertEntry,
Certificate fingerprint (MD5): 3B:8D:C8:71:4A:E1:4C:5D:7F:CE:9F:7D:5C:67:BE:E8
vshop cert, Nov 29, 2002, trustedCertEntry,
Certificate fingerprint (MD5): 0A:2D:27:96:CC:7D:9D:25:36:07:DB:6D:34:9E:77:6A

5.5 Virtual Banks (Using Red Hat Linux 8.0) 30

% keytool -list -keystore vshopbank truststore
Enter keystore password: webcom

Keystore type: jks
Keystore provider: SUN

Your keystore contains 2 entries

userbank cert, Nov 29, 2002, trustedCertEntry,
Certificate fingerprint (MD5): 11:95:96:7F:B0:96:40:BC:AD:88:E9:75:84:97:2D:CF
vshop cert, Nov 29, 2002, trustedCertEntry,
Certificate fingerprint (MD5): 0A:2D:27:96:CC:7D:9D:25:36:07:DB:6D:34:9E:77:6A

For more information of how these certificates were generated, please refer to Section
5.4 Interconnections.

5.5.5 Testing efforts

In order to check the functionality of the virtual banks we proceeded in testing each design
component separately and then put them together.
The testing efforts on the Web Servers aimed the folowing key points:

- Correct establishment of a SSL connection

- Correct creation of a session for each particular user at log in time

- Correct invalidation of a session after log off

- Correct handling of database requests from Java Server Pages

- Correct execution of special tasks (eg. The User Bank Web Server has to send
SSLBankPaymentMsg correctly to the Vshop Bank Server, if it is not the case it
should signal error)

- Correct searching for java classes (eg. with Tomcat 4.1.12 all java classes used by
Web Server needs to be in a folder WEB-INF/classes)

- Correct error handling

The testing efforts on the User Bank and Vshop Bank Host Servers aimed the following
key points:

- Correct establishment of a listening port (15494 for User Bank Host Server and
15496 for the Vshop Bank Host Server)

- Correct creation of threads in order to be able to handle multiple requests from outside

31 Mobile Payment

- Correct sending of authentification certificate to other servers

- Correct receiving of authentication certificates and checking for trusted certificates
in its truststore

- Correct execution of special tasks (eg. updating database system, sending special
messages : Confirmation Notification with SSLConfirmationMsg for the Vshop Bank
Host Server and SSLBankPaymentMsg for the User Bank Host Server)

- Correct error handling.(eg. The servers must never crash due to received incorrect
messages)

5.5.6 Limitations and Possible Improvments

The design of the above virtual banks is fully complete in terms of presenting our mobile
payments system. However it presents some limitations especially in terms of handling
errors and performing the special tasks already mentionned. Here are the main points:

1. The User Bank Mobile Payment System is able to handle only one mobile transaction
for each customer. A problem will come if the customer has performed multiple
purchases on the same vshop and the vshop redirect the customer to the Mobile
Portal of the User Bank after the client finishes purchasing and quits to shop. This
problem can be easily solved if we make a separate Java Server Page which tests
which of the multiple Confirm buttons on the client’s mobile payment account web
page has been activated.

2. Our error handling techniques are pretty simple and there are some possibilties that
the customer payes for a merchandise but never receives the product.This situation
can occur if one of the special tasks described before fails to preform due to some
external reason.This problem can be solved if there is more complicated error handling
and collaboration between banks and vshop.

32

6 Interconnections

6.1 Overview

Interconnections entail the method of communication used by each component in the
project enviroment. A component represents any endpoint of the connection such as the
vshop or the vbank. For simplicity, interconnections can be divided up into the catagories
of implementation and protocol. Implementation deals with the actual code structore and
the decisions that went into the design of the java socket code. The protocol encompasses
what different security standards are commonly used for mobile payment systems such as
SSL or WTLS. Protocol also deals with the actually message formats that are used for
communication such as WAPPUSH.

6.2 Protocol Detail

NOTES: Assuming reader has be informed about the general SSL procedure, certificates,
and what keystores and truststores are also defn of ciphers.

6.2.1 SSL

In java, the SSL protocol is encapsulated in the Java Secure Socket Extension
package(JSSE). Encapsulation allows maximum flexibility in what developers are able to
do with the many encryption ciphers available in SSL. Also, this was done to
maintain stability by standarizing socket property manipulation. For example, the
SSLSocketFactory and SSLServerSocketFactory are sockect wrapper classes that manage
all the properties of secure sockets. Although a developer could set any desired
encyrption property though the SSLcontext class such as change the security provider, all
socket manipulation is still handled by the respective SocketFactory classes.

In this project, the default encryption properties were used. This was achieved though the
call of SSLSocketFactory.GetDefault() method. The predefined default uses the SunJSSE
Security Provider. This provider follows the X.509 standard for certification creation and
uses the SSL RSA WITH RC4 128 SHA encyrption cipher suite for key encryption.

As for key management, each component was given a sample keystore and truststore. These
stores were created through the use of a program called keytool that allows the creation of
self signed certificates. Self signed certificates were used instead of an actual CA for the
sake of simplifying of the use case. Since using an actually CA to sign certificates would
require setting up certification paths and possibly the purchase of an atually certificate, it
was decided that implementation of CA interaction was beyond the scope of the use case
that was modeled. Instead, the project makes the assumption that all the banks and vshop
trust the certificates of each respective part. For details on the keytool program and the
actual certificates made, please see the appendix.

33 Mobile Payment

6.2.2 WTLS

WTLS is based on the Transport Layer Security protocol (TLS), which was designed
from the Secure Sockets Layer protocol (SSL). WTLS provides privacy and reliability for
client/server communications over a network, and is more suited for the limited memory
and processing capabilities of WAP enabled mobile phones.

From the WAP Framework Architecture, when a gateway receives a request from a
WAP client, it’s translated into HTTP to communicate with the appropriate content
server. In the implementation of a secure WAP system, the communication between the
WAP client and gateway is encrypted with WTLS. The gateway will then decrypt WTLS
and then re-encrypt using SSL to connect to the content server. The SSL connection is
similar to what one would find in a traditional secure Internet application.

For the final implementation for this project, WTLS was going to be used to connect
from the Nokia Toolkit to the vshop. However, there was no use of WTLS protocols due
to various difficulties.

6.2.3 WAPPUSH

The project follows the convention, as described in the Introduction, of using ”push”
protocols to send messages from one device/system to another, in the WAP architecture
framework. However, due to many factors hindering progress, this method of sending
messages was abandoned for the project.

WAP Framework Architecture (Figure):

{WAP Terminal}—(OTA Protocol)—{Push Proxy Gateway (PPG)}—(PAP)—{WAP
Server}

(Note: Due to difficulties regarding the PPG (WAP Gateway), as discussed later in the
report, this part of the Architecture was completely ignored project-wise for future
reference. However, the PPG (or Legacy Protocol stack if using WAP 2.0) is supposed to
be important part of the architecture since it parses the WML formatted message sent by
the terminal to a HTTP formatted message for the server. Vice versa, the PPG sends the
terminal the WML/WMLScript message that the server sends.)

A Push message is an unsolicited message sent by a server to a client. The message format
basically is an XML document, where all the information for the message is held. This
document is encapsulated with header field content (either WML or HTML depending on
which device is obtaining the push message) which contains configuration information

6.2 Protocol Detail 34

about how the message shall be received and the settings of the receiving party.

Here is the prospectus of how the WAP Push functionality should have worked forthis
project:

Simulating the PAP from the PushInitiator to the PPG, a Pushinitiator Java program
(Pushinitiator.java) was written with the JDK 1.4 API libraries (downloaded from
sun.java.com website). This was written using socket layer network code (TCP) with the
xml SI message document encapsulated in the program. Execution of the program follows
entering the port and IP address of the client program (this will later be discussed in a
future section) on a DOS command line prompt, where the XML message will be sent to
the client.

Pushinitiator command prompt:

>PushInitiator http://127.0.0.1:8800

where http://127.0.0.1:8800, is the ipaddress (127.0.0.1) and port (8800) of the receiving
client.

The PushInitator code was supposed to be incorporated with the functionalities of the
vshop and vbanks.

Simulating the Push OTA (Over The Air) Protocol from the WAP terminal (the virtual
phones from the Nokia/Ericsson SDK’s) to the receiving party, the virtual phone would
receive the message from the vshop (which would have the PushInitiator code) firstly.
Since the virtual phone’s simulated the behavior of an actual mobile cell phone, the
SDK’s would display the message content received, and the user would hit a reply on one
of the keys (eg: yes/no).

This Push OTA behavior would have been similar for the vshop and vbank
interconnections as well.

6.2.4 Installation and Problems encountered

1. SSL:

As mention above, the JSSE package hides most of the security implementation
details from the code in order to offer the developer a portable interface to manipulate
the sockets. This led to issues in terms of actual file path configurations. For example,
a typical SSLClient needs to know what certificates it can trust by looking in its
truststore. However, since the security implementation details are hidden, it was
quite difficult finding the default location of this truststore. Although unsucessful

35 Mobile Payment

in finding the default locations for the respective keystores and truststores, a flag
command was found that could overide the default location paths. This command
specified a java.lang.system property upon code execution. This led to sublteties in
implementation that are discussed in detail in the Imlementation section. For details
on the syntax of this flag please see the appendix.

2. WAPPUSH:

Factors that influenced not utilizing WAP Push/WTLS for the project were mainly
due to software difficulties and lack of appropriate resources.

Software:

For both the Nokia and Ericcson development kits, problems were faced with not
being able to figure out how to use their functionalites appropriately. For the Nokia
virtual phone, the message content would not display for the PushInitator program
despite references from the Nokia website and help documents that this method
should supposedly work. Similarly, the WAP Gateway that is built into the Nokia
Toolkit wouldn’t function correctly as well. The Ericsson virtual phone would not
work for the applications of this project without the Ericsson PPG, which would
have cost a great amount of money.

Also, time was wasted in finding a WAP gateway that would compile and run in the
Windows environment. Many possible ones offered, such as OpenWave’s WAP
Gateway, required a large monetary compensation for download use. Nokia Activ
Server 2.1 and Nokia Activ Alert 2.1 were found to support the Nokia SDK, where
the former is the WAP gateway and the latter is a Push cluster component for the
Nokia Activ server. The PushInitiator program could connect to the Nokia Active
Server 2.1, but a method to configure the server to foward this information to the
Nokia Toolkit was not found.

Other problems/limitations that were encountered:

• Constant change in the Nokia website

• Needed to downgrade JDK from newest version (1.4 we believe) to 1.3 for
installing Nokia Toolkit.

• No service support for toolkit developers

6.3 Implementation 36

• Expected software behavior not found. Wasted time on fixing/researching
these issues (ex: Pushinitiator code for nokia toolkit)

• No relevant info/answers to our questions on the web (ex: previous posts)

• Proper documentation describing flaws in toolkits not found

As a result, there was no time to invest in researching possible intrusion detection
solutions for this project such as implementing firewall Java code for the
PushInitiator or other security protocols such as digital signatures, certificates, or
WTLS encryption/decryption algorithms.

6.2.5 Limitations and Possible Improvements

Since the SSL protocol is encapsulated in JSSE and this package has gone under many
revisions over the different versions of java, the SSL code will only run properly under the
latest version of java (currently 1.4.). During the project implementation, this was a
great hinderance since a majority of the cluster computers on campus didn’t have the
latest version (example: wean linux cluster had java 1.3.1 and wean windows cluster had
java 1.2). A possible improvement to the interconnection system is to create code that
offers backward compatability across older versions of the java JSSE package.

6.3 Implementation

6.3.1 Description

Through the use of serializable objects, each component is able to create specific messages
without worrying about stream implementation details. Objects extending Serializable
have the characteristic of being convertable to and from byte streams. This characteristic
allows abstraction on what is sent when sockets are open for input and output streams.

As for socket management, creating and opening sockets for message communication is
encapsulated by the SSLserver and SSLclient objects. These classes deal with securing an
input and output stream through the network by following SSL protocol. Each vbank
and vshop will contain a SSLserver object to process incoming messages but will create
SSLclient objects as needed per message sent to other components. To handle multiple
incoming messages, SSLserver extends ServerTread, a class that creates new threads per
each client that connects to a server.

The reason for this interconnection architecture is to maximize coupling between
communication code and component webserver code. This design choice allows maximum
portablity since each individual component does not rely on the implemenation of

37 Mobile Payment

interconnections in order to run properly. This also allows the ability to import other
interconnections models such as WAP into the project environment.

6.3.2 Installation and Problems encountered

Although this code architecture allows separation of component and interconnection
code, certain subtleties exist in component code regarding the creation of interconnection
objects. Since SSL is used as the protocol to ensure security and authentication of
messages, certificate information is need during the creation of SSLserver/SSLclient
objects. To achieve this the exec method is used. The exec method creates a sub-process
that executes user defined instructions. This gives rise to a security risk since the user
has the ability to tag other instructions (example: pipe command) after the creation of
the SSLobject. Although the exec command has the reputation of being unsafe, the
components take this into consideration by using pre-defined parameters and using user
input type checking.

Another subtlety is the object encapsulation of the message itself. Serializable objects
where implemented in java with the focus of simplicity in code and not security of material.
Although difficult, with enough study of the bytestreams, a hacker can reconstruct the
object from it. Once the message object is known, that user can duplicate a message and
possibly send malicious messages to servers. Currently, components in this project handle
this security risk by using SSL to encapsulate the object streams and also by using hash
codes to create message digests.

6.3.3 Testing efforts

In this project, abstract class InterServerMsg models the basic form of a typical message
sent between any two components. Deriving specific messages from this class allowed
stability of socket code and also a method of debuging since each derived class inherited
InterServerMsg’s function to print out it’s own contents.

For the socket code, testServer.java and testClient.java were created. These driver pro-
grams were used to check the stability of the multi-threaded server code and the server
certificate authentication needed by the client. We then used programs such as netstat and
ping to watch and debug packet information.

6.3.4 Limitations and Possible Improvements

This interconnection architecture also limits the level of privacy offered. For example, In
this use case, since a message is sent from vshop to user bank to verify the payment, the
user bank has the possibility to monitor user purchasing trends. A possible improvement
to the interconnection system is to add, multiply layers of encryption so that only certain
recepients will be able to veiw certain information. For example, there could be a
different encryption used for the item bought at the vshop so that only the user and

6.3 Implementation 38

vshop could decrypt this information but when the order is fowarded to the user bank, it
will only be able to decrypt the price of this object.

Finally, an improvement for scalability is to handle the case where socket timeouts occur
during client connections to the server. Although the server can create new threads per
client, this can become quite expensive if it is waiting for clients that don’t close the socket
properly or has prematurely terminated the connection without notifying the server. By
default, the linux has a 20 minute timeout countdown but this can be adjusted to further
tweak server performance.

7 Conclusion

7.1 System Strength and Weaknesses

In terms of goals, we were able to satisfy most of our terms. For instance, the system that
we currently implemented has the essential key process concepts necessary for a secure,
convenient, and robust mobile payment system (as seen in our demonstration and the
quality of our source code). However, there are still some concerns that should be addressed.
We go into detail in the following sections.

1. Security: The system is able to handle multiple secure connections. Unfortunately,
the system is not able to handle WTLS. This is due to self-signed certificate compli-
cations with respect to the ericsson WAP gateway.

2. Privacy: In the current implementation, the userbank has more information than
is needed. This leads to a compromise in privacy because there is the potential that
the bank will use this information to track user purchasing patterns.

3. Scalability: Although this model is robust for the purpose of the demonstration, the
system can be modified for large scale industry usage. These modifications entail,
more user input checks and possible optimization of message size. For example,
the php session tags can be shorter and the html files can be stored as one letter
names. Another possible improvement can be implementation of security measures
that handle Denial of Service (DoS) and socket timeout appropriately.

REFERENCES 40

References

[1] Electronic Payment Systems Observatory
http://epso.jrc.es

[2] Mobile Electronic Transaction Initative
http://www.mobiletransaction.org
http://www.cellular.co.za/met.htm
http://www.cellular.co.za/mcommerce.htm

[3] Mobey Forum Initiative
http://www.mobeyforum.org

[4] Mobile Payment Forum Initiative
http://www.mobilepaymentforum.org

[5] W3C
http://www.w3c.org

[6] I-Mode
http://www.eurotechnology.com/imode/

[7] Sonera www.sonera.se

[8] MobilPay www.mobilpay.com

[9] Nokia Development Kit and Wap Emulators
http://www.nokia.com

[10] Ericsson
http://www.ericsson.com http://www.sonyericsson.com

[11] Openwave
http://www.openwave.com

[12] Apache Web Servers
http://www.apache.org
http://jakarta.apache.org

[13] Java API documentation
http://www.java.sun.com

41 Mobile Payment

[14] Databases
http://www.mysql.com
http://www.oracle.com

A Appendix

A.1 Survey (based on 20 people)

This survey was conducted in Oakland asking people from different backgrounds about
the WAP possibilities on a SonyEricsson T68i mobile device. The following survey results
have been recorded from different people conducted. You can see first the number of a
surveyed person, after this it follows the University and the primarily major. The
surveyed persons were offered to rate their experience by browsing different websites as
for example wap.voicestream.com or www.sonyericsson.com on a scale between 1 and 3,
based upon the screen size, connection speed and navigation.

Screen size: 1 (good); 2 (average); 3 (bad)
Connection speed: 1 (fast); 2 (normal); 3 (slow)
Navigation: 1 (simple); 2 (average); 3 (complicated)

A.1.1 Detailed results

1—UPitt History of art architecture
Screen size: 1
Connection speed: 2
Navigation: 2

2—UPitt Industrial Design
Screen size: 1
Connection speed: 2
Navigation: 1

3—not a student
Screen size: 1
Connection speed: 1
Navigation: 1

4—CMU CS
Screen size: 1
Connection speed: 3
Navigation: 2

5—CMU CS
Screen size: 1
Connection speed: 2
Navigation: 2

43 Mobile Payment

6—CMU CS
Screen size: 2
Connection speed: 3
Navigation: 2

7—CMU ECE
Screen size: 2
Connection speed: 2
Navigation: 1

8—CMU CS
Screen size: 3
Connection speed: 3
Navigation: 3

9—UPitt Medical School
Screen size: 1
Connection speed: 2
Navigation: 1

10—CS Master CivilEng.
Screen size: 1
Connection speed: 2
Navigation: 1

11—Starbucks worker
Screen size: 1
Connection speed: 1
Navigation: 1

12—Starbucks worker
Screen size: 1
Connection speed: 1
Navigation: 3

13—UPitt Mechanical Eng.
Screen size: 2
Connection speed: 3
Navigation: 2

14—CMU Business Adm
Screen size: 1
Connection speed: 1
Navigation: 1

A.1 Survey (based on 20 people) 44

15—CMU IS
Screen size: 2
Connection speed: 2
Navigation: 2

16—CMU Business Adm
Screen size: 1
Connection speed: 1
Navigation: 1

17—CMU Economics
Screen size: 2
Connection speed: 2
Navigation: 1

18—CMU MBA
Screen size: 2
Connection speed: 2
Navigation: 2

19—Kiva Han worker
Screen size: 1
Connection speed: 1
Navigation: 2

20—Kiva Han worker
Screen size: 1
Connection speed: 1
Navigation: 1

From this survey we can conclude that there is no general opinion on the cellular
phone characteristics. Perhaps this indicates that people are still not really familiar with
browsing the internet through a mobile device. We can see that some like the small size
and others not. I would say the connection speed has the lowest rating which indicates
that the connection used by conducting this survey was not really good. It depends on
different locations which connection rate we were able to achieve. My assumption is that
we didn’t have most of the time GPRS connection rate, which goes up to four time more
than the GSM rate which is around (9600).

The conclusion from our small survey would be that most of the people are still not
familiar with mobile web and that the connection available right now is not the good one.

45 Mobile Payment

A.2 CD

The CD included with this report contains the following files:

• An electronic version of this report

• All the source code and compiled classes needed to run the demo

• Complete Nokia toolkit with 6590 phone, docs, and the extra nokia servers

• Ericsson toolkit

• Openwave toolkit

• MySql server

• Apache webserver

• JConnector (MySql driver for Java) located in the java folder

• Java development toolkit version 1.4.1

• Java runtime version 1.3 in case a downgrade is needed

• Php for apache, docs and phpMyAdmin

• Winzip

• Acrobat Reader

A.3 Source code for the vshop

A.3.1 Webpages

Listing 1: Index.php

<html xmlns=”http : //www.w3 . org /1999/ xhtml”>
<head>

<t i t l e >VShop</ t i t l e >

< l i n k r e l=” s t y l e s h e e t ” h r e f=” s t y l e . c s s ” type=” text / c s s ”/>
</head>

<body>

<p c l a s s =’box ’>Carnegie Mellon Univer s i ty</p>

<p>15−494 Web commerce , s e c u r i t y and pr ivacy p r o j e c t .
</p>

<p><center ><a h r e f=” l og i n . php”>enter vshop</center ></p>

</body>

</html>

Listing 2: Login.php

<?
/∗ This i s the l og i n page .

The user i s r eques ted to enter h i s phone number
and password . I f the user ’ s wap gateway forwards the phone
number , than the f i e l d w i l l be automat i ca l l y f i l l e d .

A.3 Source code for the vshop 46

A second option would be to f i l l i t us ing c l i e n t s i d e s c r i p t .

XHTML should have perhaps provided support f o r t h i s ?
∗/

// Read the http header .
/∗ We could have i n c r ea s ed the amount o f headers in wish we

look f o r the phone number .
∗/
$headers = g e t a l l h e ad e r s () ;
$c id = $headers [’X−Nokia−CHARGING ID ’] ;

// Connect to database .
mysql connect (” l o c a l h o s t ” , ” root ” , ” root ”) ;
mysq l s e l e c t db (” vshop ”) ;

i f (! i s n u l l ($c id)) {
// We found the phone number in the header .
$ r e s u l t=mysql query (” s e l e c t userPwd , autoLogin from us e r s where phoneNo=’$cid ’ ”) ;
i f ($row=mysq l f e tch row ($ r e s u l t)) {

i f ($row [1]==1) {
// Check to see i f us er has enabled auto l og in .
Header (” Location : engine . php? user=$c id& ;pw=$row [0] ”) ;
e x i t ;

}
// Save the phone number f o r the input f i e l d .
$u s e r i d=$c id ;

}
}
?>
<html xmlns=”http : //www.w3 . org /1999/ xhtml”>
<head>

<t i t l e >VShop</ t i t l e >

< l i n k r e l=” s t y l e s h e e t ” h r e f=” s t y l e . c s s ” type=” text / c s s ”/>
</head>

<body>

<p c l a s s =’box ’>Login</p>

<form method=”get ” act i on=” engine . php”><table >

<tr><td s t y l e=”width : 30%”>Phone No :</td><td><input type=” text ” name=”user ” value=”
<?=$us e r i d?>”/></td></tr>

<tr><td>Password :</td><td><input type=”password ” name=”pw”/></td></tr>

<tr><td co l span=”2” s t y l e=” text−a l i gn : center ”><input type=”submit” value=” l og i n ”/>
</td></tr>

</table ></form>

</body>

</html>

Listing 3: Engine.php

<?
/∗ This i s the main vshop engine .

S e s s i on s are handled here .
The user i s authent i cated and then can s t a r t browsing
the cata l ogue .

∗/

// Di sab l e t r a n s s i d because o f bug in s onye r i c s s on phone !
i n i s e t (” s e s s i o n . u s e t r a n s s i d ” , ”0”) ;
// Di sab l e cook i e s , as we p r e f e r to use u r l parameters (more widly supported) .
i n i s e t (” s e s s i o n . u s e cook i e s ” , ”0”) ;
s e s s i o n s t a r t () ;

47 Mobile Payment

// Connect to database .
mysql connect (” l o c a l h o s t ” , ” root ” , ” root ”) ;
mysq l s e l e c t db (” vshop ”) ; ?>
<html xmlns=”http : //www.w3 . org /1999/ xhtml”>
<head>

<t i t l e >VShop</ t i t l e >

< l i n k r e l=” s t y l e s h e e t ” h r e f=” s t y l e . c s s ” type=” text / c s s ”/>
</head>

<body>

<?
/∗ Authent i cat i on page .

Uses php s e s s i o n to l og user . The s e s s i o n id i s passed in the ur l ,
and i s handled ” automat i ca l l y ” with php .

I f the cu r r en t u s e r i s set , browse the cata l ogue (i f the page i sn ’ t set , show the
home page)

E l s e au then t i c a t e the user and i f cor r ect , s e t the cu r r en t u s e r to $user
∗/

// check i f cu r r en t u s e r i s s e t
i f (! s e s s i o n i s r e g i s t e r e d (’ cu r r en t u s e r ’)) {

// We must check the user /password
$ r e s u l t=mysql query (” s e l e c t ∗ from us e r s where phoneNo=’$user ’ and userPwd=’$pw ’ ”)

;
$num=mysql numrows($ r e s u l t) ;
i f ($num==0) {

// acc e s s denied
p r i n t (” Access denied , sor ry .
Phone No : $user
Password : $pw</body></html

>”) ;
e x i t ;

} e l s e {
// Reg i s t e r s e s s i o n and
// s e t page to d i s p l ay to home .
$ cu r r en t u s e r=$user ;
s e s s i o n r e g i s t e r (” cu r r en t u s e r ”) ;
$page=”home ” ;

}
}

// de f au l t page i s home
i f (i s n u l l ($page))

$page=”home” ;

i f ($page==”home”) {
// Handle s p e c i a l case o f home page
$ r e s u l t=mysql query (” s e l e c t name , addres s from us e r s where phoneNo=’ $cur r ent user

’ ”) ;
$row=mysq l f e tch row ($ r e s u l t) ;
$address=$row [1] ;
p r i n t (”<p>Welcome back $row [0] . </p>”) ;
$ r e s u l t=mysql query (” s e l e c t category from ca t e g o r i e s where f a the r =’home ’ order by

category ”) ;
$num=mysql numrows($ r e s u l t) ;
p r i n t (”<p c l a s s =’box’>S e l e c t category </p>”) ;
p r i n t (”< t ab l e s t y l e =’ text−a l i gn : center ’ >”) ;
whi l e ($row=mysq l f e tch row ($ r e s u l t)) {

i f ($row2=mysq l f e tch row ($ r e s u l t)) {
pr i n t (”< tr><td><a h r e f =’ engine . php?page=”. ur l encode ($row [0]) .”& ; ” . SID.” ’ >

$row [0] </td>”) ;

A.3 Source code for the vshop 48

pr i n t (”<td><a h r e f =’ engine . php?page=”. ur l encode ($row2 [0]) .”& ; ” . SID.” ’ >$row2
[0] </td></tr >”) ;

} e l s e {
pr i n t (”< tr><td><a h r e f =’ engine . php?page=”. ur l encode ($row [0]) .”& ; ” . SID.” ’ >

$row [0] </td><td></td></tr >”) ;
}

}
pr i n t (”</ table ><hr/>”) ;
p r i n t (”< smal l><p>I s t h i s addres s r i gh t :</p><p>$address ?</p>”) ;
p r i n t (”<p s t y l e =’ text−a l i gn : r i ght ’>user p r o f i l e </p></small >”) ;

} e l s e {
// Normal cata l ogue pages
$ r e s u l t=mysql query (” s e l e c t category from ca t e g o r i e s where f a the r =’$page ’ order by

category ”) ;
$num=mysql numrows ($ r e s u l t) ;

// Header .
i f ($num>0) {

pr i n t (”<p c l a s s =’box’><smal l >”) ;
$ i =0;
whi l e ($row=mysq l f e tch row ($ r e s u l t)) {

$ i++;
p r i n t (”<a h r e f =’ engine . php?page=”. ur l encode ($row [0]) .”& ; ” . SID.” ’ >$row [0] ”) ;
i f ($i<$num)

pr i n t (” | ”) ;
}
pr i n t (”</ small ></p>”) ;

}

// Main content .
$ r e s u l t=mysql query (” s e l e c t productID , name , p r i c e from products where category=’

$page ’ order by p r i c e ”) ;
$num=mysql numrows ($ r e s u l t) ;
i f ($num>0) {

pr i n t (”< table ><tr><th s t y l e =’width:65%’> Items</th><th s t y l e =’width:35%’> Price</
th></tr >”) ;

whi l e ($row=mysq l f e tch row ($ r e s u l t)) {
pr i n t (”< tr><td><a h r e f =’ d e t a i l . php? item=$row [0]& ; ” . SID.” ’ >$row [1] </td><

td>\$ ” . number format ($row [2] , 2) . ” </ td></tr >”) ;
}
pr i n t (”</ table >”) ;

}

// Footer .
f unc t i on path ($r ec) {

$ r e s u l t=mysql query (” s e l e c t f a the r from ca t e g o r i e s where category=’$rec ’ ”) ;
$row=mysq l f e tch row ($ r e s u l t) ;
i f ($row [0] !=”home”) {

path ($row [0]) ;
p r i n t (” / < a h r e f =’ engine . php?page=”. ur l encode ($row [0]) .”& ; ” . SID.” ’ >$row

[0] ”) ;
} e l s e {

pr i n t (”<a h r e f =’ engine . php?page=”. ur l encode ($row [0]) .”& ; ” . SID.” ’ >$row [0] </
a>”) ;

}
}
pr i n t (”<p c l a s s =’box’><smal l>Quick browse : ”) ;
path ($page) ;
p r i n t (”</ small ></p>”) ;

}
?>

49 Mobile Payment

</body>

</html>

Listing 4: Detail.php

<?
/∗ This page simply d i s p l ay s the d e t a i l s o f an item .

Nothing very s p e c i a l about i t .
The case o f i n e x i s t a n t product doesn ’ t need to be handled . . .

∗/

// Di sab l e t r a n s s i d because o f bug in s onye r i c s s on phone !
i n i s e t (” s e s s i o n . u s e t r a n s s i d ” , ”0”) ;
// Di sab l e cook i e s .
i n i s e t (” s e s s i o n . u s e cook i e s ” , ”0”) ;
s e s s i o n s t a r t () ;
i f (! s e s s i o n i s r e g i s t e r e d (’ cu r r en t u s e r ’)) {

// Make sur e user didn ’ t j u s t type the u r l .
Header (” Location : index . php”) ;
e x i t ;

}

// Connect to database .
mysql connect (” l o c a l h o s t ” , ” root ” , ” root ”) ;
mysq l s e l e c t db (” vshop ”) ;
?>
<html xmlns=”http : //www.w3 . org /1999/ xhtml”>
<head>

<t i t l e >VShop</ t i t l e >

< l i n k r e l=” s t y l e s h e e t ” h r e f=” s t y l e . c s s ” type=” text / c s s ”/>
</head>

<body>

<?
// Get product i n f o .
$ r e s u l t=mysql query (” s e l e c t name , pr i ce , d e s c r i p t i o n from products where productID =’

$item ’ ”) ;
$row=mysq l f e tch row ($ r e s u l t) ;

p r i n t (”<p c l a s s =’box’>$row [0] </p>”) ;
i f ($row [3] !=””)

p r i n t (”<p>$row [2] </p>”) ;
e l s e

p r i n t (”<p>$row [2] </p>”) ;
p r i n t (”<p><center ><a h r e f =’buy . php? item=$item& ; ” . SID.” ’ >Buy f o r \ $ ” .

number format ($row [1] , 2) . ” </ a></center ></p>”) ;
?>
</body>

</html>

Listing 5: Buy.php

<?
/∗ This page connects to the bank and sends a UserPurchaseMsg java ob j e c t .

I t then r e d i r e c t s the user to the bank ’ s webs i te .
∗/

// Di sab l e t r a n s s i d because o f bug in s onye r i c s s on phone !
i n i s e t (” s e s s i o n . u s e t r a n s s i d ” , ”0”) ;
// Di sab l e cook i e s .
i n i s e t (” s e s s i o n . u s e cook i e s ” , ”0”) ;
s e s s i o n s t a r t () ;

A.3 Source code for the vshop 50

i f (! s e s s i o n i s r e g i s t e r e d (’ cu r r en t u s e r ’)) {
// I f the user got here by typing the u r l (and not ac tua l l y s e l e c t i n g an item)
// then go back to homepage and reques t a l og i n .
Header (” Location : index . php”) ;
e x i t ;

}

// Connect to database .
mysql connect (” l o c a l h o s t ” , ” root ” , ” root ”) ;
mysq l s e l e c t db (” vshop ”) ;

/∗ Get the user ’ s i n f o ∗/
$ r e s u l t=mysql query (” s e l e c t bankIP , accountNo , name from us e r s where phoneNo=’

$cur r ent user ’ ”) ;
$row=mysq l f e tch row ($ r e s u l t) ;
$dest=$row [0] ;
$port =15494;
$username=$row [2] ;
$accountno=$row [1] ;
$vshopaccountno=”1235”;
$vshopbankip=”u r l i n 1 .wv . cc . cmu . edu ” ;

/∗ Get product i n f o ∗/
$ r e s u l t=mysql query (” s e l e c t name , p r i c e from products where productID =’$item ’ ”) ;
$row=mysq l f e tch row ($ r e s u l t) ;
$ a r t i c l e=$row [0] ;
$p r i c e=$row [1] ;

/∗ Add to t r an s ac t i on s tab l e s ∗/
$ r e s u l t=mysql query (” i n s e r t i n to t r an s ac t i on s (productID , pr i ce , userID , shipment)

va lues (’ $item ’ , ’ $pr i ce ’ , ’ $cur r ent user ’ , ’ 00000000000000 ’) ”) ;
$ t rans=mys q l i n s e r t i d () ;

/∗ Connect to bank s e r v l e t ∗/
$e=exec (” java −Djavax . net . s s l . t r u s tS to r e=vshop t r u s t s t o r e −Djavax . net . s s l .

trustStorePassword=webcom SSLUserPurchase $dest $port \” $username\” $accountno
$vshopbankip $vshopaccountno \” $ a r t i c l e \” $p r i c e $trans \” alok .wv . cc . cmu . edu \””)
;

i f ($e !=”ok ”) {
// An e r r o r occured with c i en t java code .
p r i n t (”<html xmlns=\”http : //www.w3 . org /1999/ xhtml\”>\n<head>\n<t i t l e >Error</ t i t l e

></head><body>”) ;
p r i n t (”<p>An er r o r occured whi le t r y i ng to connect to bank.
”) ;
p r i n t $e ;
$ r e s u l t = mysql query (” update t r an s ac t i on s s e t shipment = ’20000101000000 ’ where

t ransact i onID=$trans ”) ;
p r i n t (”</p></body></html>”) ;
e x i t ;

}

/∗ Add to wai t ing tab l e ∗/
mysql query (” i n s e r t i n to wa i t ing (t ransact i onID) va lues (’ $trans ’) ”) ;

/∗ Go to bank to conf i rm ∗/
Header (” Location : http : // $dest :8080/ conf . j s p ? accno=$accountno ”) ;
?>

51 Mobile Payment

A.3.2 SQL Queries

These are the queries needed to create the vshop’s database.

create table users (
phoneNo char(11) not null,
userPwd char(11),
gatewayIP char(15),
gatewayPort int,
name varchar(20),
autoLogin bool,
bankIP char(15),
bankPort int,
accountNo char(15),
address varchar(60),
primary key(phoneNo)

);

create table transactions (
transactionID int not null auto increment,
productID int not null,
price float,
userID char(11) not null,
purchase timestamp,
shipment timestamp,
primary key(transactionID),
foreign key (productID) references products,
foreign key (userID) references users

);

create table waiting (
transactionID int not null,
primary key(transactionID),
foreign key (transactionID) references transactions

);

create table toship (
transactionID int not null,
primary key(transactionID),
foreign key (transactionID) references transactions

);

create table categories (
category char(20) not null,
father char(20),
primary key (category),
foreign key (father) references categories(category)

);

A.4 Source code for the virtual banks 52

create table products (
productID int not null auto increment,
category char(20),
name varchar(20),
price float,
description varchar(200),
primary key(productID),
foreign key(category) references categories

);

A.4 Source code for the virtual banks

A.4.1 Source code of the UserBank WebServer

Listing 6: UserLogIn.html

<HTML>
<HEAD><TITLE>User Vi r tua l Bank</TITLE>

</HEAD>
<BODY bgco lor = ”blue ”>
<P>

<f ont s i z e = ”20” f a c e = ”Verdana ”>USER VIRTUAL BANK
</P>

<P>

<P>

<FORM name=”form1” method=”post ” act i on=”UserTestLogIn . j s p ”>
<P>Customer number </P>

<INPUT type=” text ” name=” accountid ” maxlength=”10”>
<P>PIN</P>

<INPUT type=”password ” name=”pin id ” maxlength=”4”>
<P>

<INPUT type=”submit” name=”Sign on” value=”Sign on”>
</FORM>

</BODY>
</HTML>

Listing 7: UserTestLogIn.jsp

<%@ page import=”java . u t i l . ∗ ” %>

<%@ page import=”java . s q l . ∗ ” %>

<%!
Str ing OraDriver= ” o r a c l e . jdbc . d r i v e r . Orac l eDr iver ” ;
Str ing dbUrl= ” jdbc : o r a c l e : th in : @dbclass . i n t r o . cs . cmu . edu : 1 5 2 1 : db intro ” ;
Str ing user ;
Str ing password ;
Str ing sqlStmtLogIn ;
%>

<%
try {

user=reques t . getParameter (” accountid ”) ;
s e s s i o n . s e tAt t r i bu t e (” s e s s i o n ” , user) ;
password= reques t . getParameter (” p in id ”) ;
boolean entrance = f a l s e ;

53 Mobile Payment

Class . forName (OraDriver) ;

Connection con = DriverManager . getConnect ion (dbUrl , ” bdanev ” ,” danev ”) ;
Statement stmt = con . createStatement () ;

sqlStmtLogIn = ”SELECT ∗ FROM USERUSERS WHERE ACCOUNTID=’”+user +” ’ AND PINID=’”+
password +” ’”;

Resu l tSet r s = stmt . executeQuery (sqlStmtLogIn) ;

whi l e (r s . next ()) {
Str ing dbUser = r s . g e tS t r i ng (” accountid ”) ;
Str ing dbPassword= r s . g e tS t r i ng (” p in id ”) ;
i f ((user . equa l s (dbUser)) && (password . equa l s (dbPassword)))

{
entrance=true ;
}

}

i f (entrance == true) {
r s . c l o s e () ;
stmt . c l o s e () ;
con . c l o s e () ;
%>

<j s p : forward page=”UserUserAccount . j s p ”/>
<%}
e l s e
{
r s . c l o s e () ;
stmt . c l o s e () ;
con . c l o s e () ;
%>

<j s p : forward page=”UserLogIn . html”/>
<%}
}

catch (Exception e) {
out . p r i n t (” Something i s wrong” + e . t oS t r i ng ()) ;
}
%>

Listing 8: UserUserAccount.jsp
<html>
<body>

<%@ page import=”java . u t i l . ∗ ” %>

<%@ page import=”java . s q l . ∗ ” %>

<%!
Str ing OraDriver= ” o r a c l e . jdbc . d r i v e r . Orac l eDr iver ” ;
Str ing dbUrl= ” jdbc : o r a c l e : th in : @dbclass . i n t r o . cs . cmu . edu : 1 5 2 1 : db intro ” ;
Str ing user ;
Str ing dbName;
Str ing dbBalance ;
%>

<%
try {

Class . forName (OraDriver) ;

A.4 Source code for the virtual banks 54

Connection con = DriverManager . getConnect ion (dbUrl , ” bdanev ” ,” danev ”) ;
Statement stmt = con . createStatement () ;

user=(Str ing) s e s s i o n . getAttr ibut e (” s e s s i o n ”) ;

Resu l tSet r s = stmt . executeQuery (”SELECT ∗ FROM USERACCOUNT WHERE ACCOUNTID=’”+user
+” ’”) ;

whi l e (r s . next ()) {
dbName = r s . g e tS t r i ng (” customername ”) ;
dbBalance= r s . g e tS t r i ng (” cur r entba lance ”) ;

}
// out . p r i n t (”< tr><td>”+ dbName + ”</td><td >” + dbBalance + ” $</td></tr >”) ;
out . p r i n t l n (” He l l o ” + dbName) ; %>

<P>

<%
out . p r i n t l n (”Your cur r ent balance i s : ” + dbBalance + ” $”) ;
%>

<P> Al l your t r an s ac t i on s are : </P>

<%
Resu l tSet ns = stmt . executeQuery (”SELECT ∗ FROM USERTRANSACTIONS WHERE ACCOUNTID=’”+

user +” ’”) ;
whi l e (ns . next ()) {
Str ing dbTransactionDate = ns . g e tS t r i ng (” t r an s ac t i on da t e ”) ;
Str ing dbTransactionDesc = ns . g e tS t r i ng (” d e s c r i p t i o n ”) ;
Str ing dbTransactionAmount = ns . g e tS t r i ng (” amount”) ;
out . p r i n t (”< tr><td>”+ dbTransactionDate + ” </td><td>” +
dbTransactionDesc + ” </td><td>”+ dbTransactionAmount + ” $</td></tr>
”) ;
}

r s . c l o s e () ;
stmt . c l o s e () ;
con . c l o s e () ;
} catch (Exception e) {
out . p r i n t (” Entrance wrong” + e . t oS t r i ng ()) ;
}
%>

<P>

<P>

<a h r e f = ”UserLogOut . j s p ”>
s i gn o f f

</body>

</html>

Listing 9: UserLogOut.jsp

<%@ page import=”java . u t i l . ∗ ” %>

<%@ page import=”java . s q l . ∗ ” %>

<%
se s s i o n . i n v a l i d a t e () ;
%>

<j s p : forward page =”UserLogIn . html”/>

Listing 10: conf.jsp

<html xmlns=”http : //www.w3 . org /1999/ xhtml”>

55 Mobile Payment

<head>

<t i t l e >User Bank</ t i t l e >

< l i n k r e l=” s t y l e s h e e t ” h r e f=” s t y l e . c s s ” type=” text / c s s ”/>
</head>

<%!
Str ing d e f a u l t u s e r = nu l l ;
%><%
de f au l t u s e r = reques t . getParameter (” accno ”) ;
i f (d e f a u l t u s e r == nu l l)

d e f a u l t u s e r = ” ” ;
%><body>

<p c l a s s =’box ’>UserBank</p>

<form method=”get ” act i on=”MobileTestLogIn . j s p ”>
<p>Customer Number :</p>

<p>

<% out . p r i n t (”< input type=\” text \” name=\”customer number \” value=\””+ de f a u l t u s e r
+”\”/>”) ;

%>

</p>

<p>Password :</p>

<p><input type=”password ” name=”password ”/></p>

<p><input type=”submit” value=” l og i n ”/></p>

</form>

</body>

</html>

Listing 11: UserMobileAccount.jsp

<html xmlns=”http : //www.w3 . org /1999/ xhtml”>
<head>

<t i t l e >Mobile Conf i rmation</ t i t l e >

</head>

<body>

<%@ page import=”java . u t i l . ∗ ” %>

<%@ page import=”java . s q l . ∗ ” %>

<%!
Str ing OraDriver= ” o r a c l e . jdbc . d r i v e r . Orac l eDr iver ” ;
Str ing dbUrl= ” jdbc : o r a c l e : th in : @dbclass . i n t r o . cs . cmu . edu : 1 5 2 1 : db intro ” ;
Str ing user ;
Str ing name = nu l l ;
%>

<%
try {

Class . forName (OraDriver) ;

Connection con = DriverManager . getConnect ion (dbUrl , ” bdanev ” ,” danev ”) ;
Statement stmt = con . createStatement () ;

user=(Str ing) s e s s i o n . getAttr ibute (” s e s s i o n ”) ;

Resu l tSet r s = stmt . executeQuery (”SELECT CUSTOMERNAME FROM USERACCOUNT WHERE
ACCOUNTID=’”+user +” ’”) ;

i f (r s . next ()) name = r s . g e tS t r i ng (1) ;
out . p r i n t l n(”<p>Hel l o ” + name +”</p>”) ;
r s . c l o s e () ;
%>

<p>

<f ont s i z e=”4” co l o r=”red ”>
Mobile t r an s ac t i on to conf i rm :

A.4 Source code for the virtual banks 56

</p>

<%
Resu l tSet ns = stmt . executeQuery (”SELECT ∗ FROM USERMOBILEPAYMENTS WHERE

ClIENTACCOUNTID=’”+user +” ’”) ;
i f (ns . next ()) {
Str ing dbTransactionDate = ns . g e tS t r i ng (” t r an s ac t i on da t e ”) ;
Str ing dbTransactionDesc = ns . g e tS t r i ng (” d e s c r i p t i o n ”) ;
Str ing dbTransactionAmount = ns . g e tS t r i ng (” amount”) ;
out . p r i n t (”<p>Descr ipt i on </p>”) ;
out . p r i n t (”<p>”+dbTransactionDesc+”</p>”) ;
out . p r i n t (”<p>Date</p>”) ;
out . p r i n t (”<p>”+dbTransactionDate+”</p>”) ;
out . p r i n t (”<p>Amount</p>”) ;
out . p r i n t (”<p>”+dbTransactionAmount +” $</p>”) ;
}
%>

<p><a h r e f=”UserConfirmMobileTransact ion . j s p ”>
<f ont s i z e=”3” co l o r=” green ”>Confirm</p>

<%

ns . c l o s e () ;
stmt . c l o s e () ;
con . c l o s e () ;
} catch (Exception e) {
out . p r i n t (” Entrance wrong” + e . t oS t r i ng ()) ;
}
%>

<p>

<a h r e f = ”UserMobileLogOut . j s p ”>
<f ont s i z e=”3” co l o r=” red ”>Reject

</p>

</body>

</html>

Listing 12: MobileTestLogIn

<%@ page import=”java . u t i l . ∗ ” %>

<%@ page import=”java . s q l . ∗ ” %>

<%!
Str ing OraDriver= ” o r a c l e . jdbc . d r i v e r . Orac l eDr iver ” ;
Str ing dbUrl= ” jdbc : o r a c l e : th in : @dbclass . i n t r o . cs . cmu . edu : 1 5 2 1 : db intro ” ;
Str ing user ;
Str ing password ;
Str ing sqlStmtLogIn ;
%>

<%
try {

user=reques t . getParameter (” customer number ”) ;
s e s s i o n . s e tAt t r i bu t e (” s e s s i o n ” , user) ;
password= reques t . getParameter (” password ”) ;
boolean entrance = f a l s e ;

Class . forName (OraDriver) ;

Connection con = DriverManager . getConnect ion (dbUrl , ” bdanev ” ,” danev ”) ;
Statement stmt = con . createStatement () ;

57 Mobile Payment

sqlStmtLogIn = ”SELECT ∗ FROM USERUSERS WHERE ACCOUNTID=’”+user +” ’ AND PINID=’”+
password +” ’”;

Resu l tSet r s = stmt . executeQuery (sqlStmtLogIn) ;

whi l e (r s . next ()) {
Str ing dbUser = r s . g e tS t r i ng (” accountid ”) ;
Str ing dbPassword= r s . g e tS t r i ng (” p in id ”) ;
i f ((user . equa l s (dbUser)) && (password . equa l s (dbPassword)))

{
entrance=true ;
}

}

i f (entrance == true) {
r s . c l o s e () ;
stmt . c l o s e () ;
con . c l o s e () ;
%>

<j s p : forward page=”UserMobileAccount . j s p ”/>
<%}
e l s e
{
r s . c l o s e () ;
stmt . c l o s e () ;
con . c l o s e () ;
s e s s i o n . i n v a l i d a t e () ;
%>

<j s p : forward page=” conf . html”/>
<%}
}

catch (Exception e) {
out . p r i n t (” Something i s wrong” + e . t oS t r i ng ()) ;
}
%>

Listing 13: UserMobileLogOut.jsp

<%@ page import=”java . u t i l . ∗ ” %>

<%@ page import=”java . s q l . ∗ ” %>

<%
se s s i o n . i n v a l i d a t e () ;
%>

<j s p : forward page =” conf . html”/>

Listing 14: UserConfirmationMobileTransaction.jsp

<html xmlns=”http : //www.w3 . org /1999/ xhtml”>
<head>

<t i t l e >Proceed Transact ion</ t i t l e >

</head>

<body>

<%@ page import=”java . u t i l . ∗ ” %>

<%@ page import=”java . s q l . ∗ ” %>

<%@ page import=”java . lang . ∗ ” %>

<%@ page import=”ch . cmu . webproject . ∗ ” %>

<%!

A.4 Source code for the virtual banks 58

Str ing OraDriver= ” o r a c l e . jdbc . d r i v e r . Orac l eDr iver ” ;
Str ing dbUrl= ” jdbc : o r a c l e : th in : @dbclass . i n t r o . cs . cmu . edu : 1 5 2 1 : db intro ” ;
Str ing user ;
Str ing vshopbankport = ”15496”;
Str ing vshopport = ”15494”;
Connection con = nu l l ;
Statement stmt = nu l l ;
Resu l tSet ns = nu l l ;
%>

<%
user =(Str ing) s e s s i o n . getAttr ibute (” s e s s i o n ”) ;
t ry {
Class . forName (OraDriver) ;
con = DriverManager . getConnect ion (dbUrl , ” bdanev ” ,” danev ”) ;
stmt = con . createStatement () ;
ns = stmt . executeQuery (”SELECT ∗ FROM USERMOBILEPAYMENTS WHERE CLIENTACCOUNTID=’”+

user +” ’”) ;
i f (ns . next ()) {
Str ing dbMobileID = ns . g e tS t r i ng (” mobi l e id ”) ;
Str ing dbClientAccountNo = ns . g e tS t r i ng (” c l i e n t a c c oun t i d ”) ;
Str ing dbClientName = ns . g e tS t r i ng (” cl i entname ”) ;
Str ing dbVshopBankIP = ns . g e tS t r i ng (” vshopbankip ”) ;
Str ing dbVshopIP = ns . g e tS t r i ng (” vshopip ”) ;
Str ing dbVshopAccountID = ns . g e tS t r i ng (” vshopaccountid ”) ;
Str ing dbDescr ipt i on = ns . g e tS t r i ng (” d e s c r i p t i o n ”) ;
Str ing dbAmount = ns . g e tS t r i ng (” amount”) ;
Str ing dbTransactionID = ns . g e tS t r i ng (” t r a n s a c t i o n i d ”) ;
Str ing dbTransactionDate = ns . g e tS t r i ng (” t r an s ac t i on da t e ”) ;

CurrentDate newdate = new CurrentDate () ;
Str ing date = newdate . getCurrentDate () ;

/∗ Open a socket and send the money to the vshop bank ∗/
Str ing newdesc = dbDescr ipt i on . r ep l a c e (’ ’ , ’ ’) ;
Process bankpayment = nu l l ;
bankpayment = Runtime . getRuntime () . exec (”/ usr / java / j2sdk1 . 4 . 1 01 /bin / java −cp / var /

tomcat4/webapps/ROOT/WEB−INF/ c l a s s e s / −Djavax . net . s s l . t r u s tS to r e=/var /tomcat4/
webapps /ROOT/WEB−INF/ c l a s s e s /ch/cmu/webproject / u s e r bank t r u s t s t o r e −Djavax . net .
s s l . trustStorePassword=webcom SSLBankPayment ”+dbVshopBankIP+” ”+”15496”+” ”+
dbVshopAccountID+” ”+newdesc +” ”+dbAmount+” ”+dbTransactionID+” ”+ dbVshopIP) ;

i f (bankpayment == nu l l)
throw new Exception (”Bankpayment f a i l e d to be sent ! ”) ;

/∗ I n s e r t the t r an s ac t i on in the database and update the amount i f payment
s u c c e s s f u l l y s ent ∗/

Str ing sq l S tmt In s e r t = ”INSERT INTO USERTRANSACTIONS VALUES(’”+ user +” ’ , ’”+ date
+” ’ , ’”+ dbDescr ipt i on+”’ ,”+dbAmount+”) ” ;

i n t SQLCheck = stmt . executeUpdate (s q l S tmt In s e r t) ;
i f (SQLCheck == 0)

throw new Exception (” Problem in I n s e r t i o n ”) ;
Str ing sqlStmtUpdate = ”UPDATE USERACCOUNT SET CURRENTBALANCE = CURRENTBALANCE−”+

dbAmount + ”WHERE ACCOUNTID=’”+dbClientAccountNo +” ’”;
i n t SQLUpdate = stmt . executeUpdate (sqlStmtUpdate) ;
i f (SQLUpdate == 0)

throw new Exception (” Problem in Update ”) ;

/∗ Delete the mobile t r an s a c t i on from usermobi lepayments ∗/

59 Mobile Payment

Str ing de l = ”DELETE FROM USERMOBILEPAYMENTS WHERE MOBILE ID =”+dbMobileID ;
i n t SQLDelete = stmt . executeUpdate (de l) ;
i f (SQLDelete == 0)

throw new Exception (” Problem in Delete ”) ;

}
s e s s i o n . i n v a l i d a t e () ;
ns . c l o s e () ;
stmt . c l o s e () ;
con . c l o s e () ;
%>

<p>

<f ont s i z e=”1” co l o r=”red ”>
Conf i rmation s u c c e s s f u l

Thank you

</p>

<%
} catch (Exception e)
{
ns . c l o s e () ;
con . r o l l ba ck () ;
con . c l o s e () ;
s e s s i o n . i n v a l i d a t e () ;
out . p r i n t (” Exception r a i s ed ! Problem !” + e . t oS t r i ng ()) ;
}
%>

</body>

</html>

Listing 15: Confirmation OK.jsp

<%@ page import=”java . u t i l . ∗ ” %>

<%@ page import=”java . s q l . ∗ ” %>

<%
se s s i o n . i n v a l i d a t e () ;
%>

<j s p : forward page =” conf . html”>

Listing 16: UserBankDB.txt

/∗∗/
Here we present the database o f the User Bank
Currently ther e are f i v e u s e r s , which we used f o r t e s t i n g
/∗∗∗/

bdanev
danev
drop tab l e ONLYONE ROW
drop sequence usermobi l epayments seq
drop tab l e USERUSERS
drop tab l e USERACCOUNT
drop tab l e USERTRANSACTIONS
drop tab l e USERMOBILEPAYMENTS

cr ea t e tab l e ONLYONE ROW(va l i n t e g e r)
i n s e r t i n to ONLY ONE ROW values (1)

c r ea t e sequence usermobi l epayments seq increment by 1
c r ea t e tab l e USERUSERS(

accountid varchar (10) ,

A.4 Source code for the virtual banks 60

pin id varchar (4)
)

c r ea t e tab l e USERACCOUNT(
accountid varchar (10) ,
customername varchar (50) ,
cur r entba lance number (38 , 2) ,
primary key (accountid)
)

c r ea t e tab l e USERTRANSACTIONS (
accountid varchar (10) ,
t r an s a c t i on da t e date ,
d e s c r i p t i o n varchar (50) ,
amount number (38 , 2)
)

c r ea t e tab l e USERMOBILEPAYMENTS (
mobi l e id integer ,
c l i entname varchar (30) ,
c l i e n t a c c oun t i d varchar (10) ,
vshopbankip varchar (30) ,
vshopaccountid varchar (10) ,
t r an s a c t i on da t e date ,
d e s c r i p t i o n varchar (50) ,
amount number (38 , 2) ,
t r a n s a c t i o n i d integer ,
vshopip varchar (20)
)

i n s e r t i n to USERMOBILEPAYMENTS
va lues (

1 , ’ Alok M’ , ’ 1 234 ’ , ’ u r l i n 1 .wv . cc . cmu . edu ’ ,
’1235 ’ , ’15 −DEC−2002 ’ , ’Coucouc ’ , 2 0 0 . 3 2 , 2 , ’ 2 1 . 2 1 2 . 2 1 . 2 1 ’)

i n s e r t i n to USERUSERS
va lues (’ 1234 ’ , ’ 1 234 ’)

i n s e r t i n to USERUSERS
va lues (’ 1111111111 ’ , ’ 1111 ’)

i n s e r t i n to USERUSERS
va lues (’ 2222222222 ’ , ’ 2222 ’)

i n s e r t i n to USERUSERS
va lues (’ 3333333333 ’ , ’ 3333 ’)

i n s e r t i n to USERUSERS
va lues (’ 4444444444 ’ , ’ 4444 ’)

i n s e r t i n to USERACCOUNT
values (’ 1234 ’ , ’ Alok M’ , 1000)

i n s e r t i n to USERACCOUNT
values (’ 1111111111 ’ , ’Kenan H’ , 2000)

i n s e r t i n to USERACCOUNT
values (’ 2222222222 ’ , ’ Bor i s D’ , 3000)

i n s e r t i n to USERACCOUNT
values (’ 3333333333 ’ , ’Danny L’ , 4000)

i n s e r t i n to USERACCOUNT
values (’ 4444444444 ’ , ’ Chuck C’ , 5000)

i n s e r t i n to USERTRANSACTIONS
va lues (’1234 ’ , ’05 −NOV−02 ’ , ’ Achat BestBuy ’ , 2 0 0 . 2 3)

i n s e r t i n to USERTRANSACTIONS
va lues (’1111111111 ’ , ’04 −NOV−02 ’ , ’ Achat GeantEagle ’ , 2 0 . 4 5)

i n s e r t i n to USERTRANSACTIONS
va lues (’2222222222 ’ , ’03 −NOV−02 ’ , ’ Achat Kauffmann ’ , 2 0 . 5 6)

i n s e r t i n to USERTRANSACTIONS
va lues (’3333333333 ’ , ’05 −NOV−02 ’ , ’ Achat Of f i ceDepot ’ , 5 0 . 9 9)

i n s e r t i n to USERTRANSACTIONS
va lues (’4444444444 ’ , ’05 −NOV−02 ’ , ’ Achat Target ’ , 3 0 . 8 9)

61 Mobile Payment

A.4.2 Source code of the VShop WebServer

Listing 17: VshopLogIn.html

<HTML>
<HEAD><TITLE>VShop Vi r tua l Bank</TITLE>

</HEAD>

<BODY bgco lor = ”blue ”>
<P>

<f ont s i z e = ”20” f a c e= ”Verdana ”>VSHOP VIRTUAL BANK
</P>

<P>

<P>

<FORM name=” form1” method=”post ” act i on=”VshopTestLogIn . j s p ”>
<P>Customer number </P>

<INPUT type=” text ” name=”accountid ” maxlength=”10”>
<P>PIN</P>

<INPUT type=”password ” name=” pin id ” maxlength=”4”>
<P>

<INPUT type=”submit” name=”Sign on” value=”Sign on”>
</FORM>

</BODY>
</HTML>

Listing 18: VshopTestLogIn.jsp

<%@ page import=”java . u t i l . ∗ ” %>

<%@ page import=”java . s q l . ∗ ” %>

<%!
Str ing OraDriver= ” o r a c l e . jdbc . d r i v e r . Orac l eDr iver ” ;
Str ing dbUrl= ” jdbc : o r a c l e : th in : @dbclass . i n t r o . cs . cmu . edu : 1 5 2 1 : db intro ” ;
Str ing user ;
Str ing password ;
Str ing sqlStmtLogIn ;
%>

<%
try {

user=reques t . getParameter (” accountid ”) ;
s e s s i o n . s e tAt t r i bu t e (” s e s s i o n ” , user) ;
password= reques t . getParameter (” p in id ”) ;
boolean entrance = f a l s e ;

Class . forName (OraDriver) ;

Connection con = DriverManager . getConnect ion (dbUrl , ” bdanev ” ,” danev ”) ;
Statement stmt = con . createStatement () ;

sqlStmtLogIn = ”SELECT ∗ FROM VSHOPUSERS WHERE ACCOUNTID=’”+user +” ’ AND PINID=’”+
password +” ’”;

Resu l tSet r s = stmt . executeQuery (sqlStmtLogIn) ;

whi l e (r s . next ()) {
Str ing dbUser = r s . g e tS t r i ng (” accountid ”) ;
Str ing dbPassword= r s . g e tS t r i ng (” p in id ”) ;
i f ((user . equa l s (dbUser)) && (password . equa l s (dbPassword)))

A.4 Source code for the virtual banks 62

{
entrance=true ;
}

}

i f (entrance == true) {
r s . c l o s e () ;
stmt . c l o s e () ;
con . c l o s e () ;
%>

<j s p : forward page=”VshopAccount . j s p ”/>
<%}
e l s e
{
r s . c l o s e () ;
stmt . c l o s e () ;
con . c l o s e () ;
%>

<j s p : forward page=”VShopLogIn . html”/>
<%}
}

catch (Exception e) {
out . p r i n t (” Something i s wrong” + e . t oS t r i ng ()) ;
}
%>

Listing 19: VshopAccount.jsp
<html>
<body>

<%@ page import=”java . u t i l . ∗ ” %>

<%@ page import=”java . s q l . ∗ ” %>

<%!
Str ing OraDriver= ” o r a c l e . jdbc . d r i v e r . Orac l eDr iver ” ;
Str ing dbUrl= ” jdbc : o r a c l e : th in : @dbclass . i n t r o . cs . cmu . edu : 1 5 2 1 : db intro ” ;
Str ing user ;
Str ing dbName;
Str ing dbBalance ;
%>

<%
try {

Class . forName (OraDriver) ;

Connection con = DriverManager . getConnect ion (dbUrl , ” bdanev ” ,” danev ”) ;
Statement stmt = con . createStatement () ;

user=(Str ing) s e s s i o n . getAttr ibut e (” s e s s i o n ”) ;

Resu l tSet r s = stmt . executeQuery (”SELECT ∗ FROM VSHOPACCOUNT WHERE ACCOUNTID=’”+
user +” ’”) ;

whi l e (r s . next ()) {
dbName = r s . g e tS t r i ng (” customername ”) ;
dbBalance= r s . g e tS t r i ng (” cur r entba lance ”) ;

}
// out . p r i n t (”< tr><td>”+ dbName + ”</td><td >” + dbBalance + ” $</td></tr >”) ;

63 Mobile Payment

out . p r i n t l n (” He l l o ” + dbName) ; %>

<P>

<%
out . p r i n t l n (”Your cur r ent balance i s : ” + dbBalance + ” $”) ;
%>

<P> Al l your t r an s ac t i on s are : </P>

<%
Resu l tSet ns = stmt . executeQuery (”SELECT ∗ FROM TRANSACTIONS WHERE ACCOUNTID=’”+user

+” ’”) ;
whi l e (ns . next ()) {
Str ing dbTransactionDate = ns . g e tS t r i ng (” t r an s ac t i on da t e ”) ;
Str ing dbTransactionDesc = ns . g e tS t r i ng (” d e s c r i p t i o n ”) ;
Str ing dbTransactionAmount = ns . g e tS t r i ng (” amount”) ;
out . p r i n t (”< tr><td>”+ dbTransactionDate + ” </td><td>” +
dbTransactionDesc + ” </td><td>”+ dbTransactionAmount + ” $</td></tr>
”) ;
}

r s . c l o s e () ;
stmt . c l o s e () ;
con . c l o s e () ;
} catch (Exception e) {
out . p r i n t (” Entrance wrong” + e . t oS t r i ng ()) ;
}
%>

<P>

<P>

<a h r e f = ”VshopLogOut . j s p ”>
s i gn o f f

</body>

</html>

Listing 20: VshopLogOut.jsp

<%@ page import=”java . u t i l . ∗ ” %>

<%@ page import=”java . s q l . ∗ ” %>

<%
se s s i o n . i n v a l i d a t e () ;
%>

<j s p : forward page =”VshopLogIn . html”/>

Listing 21: vshopBanqueDB.txt

/∗∗∗/
Here we present the database o f the Vshop Bank .
Currently i t conta ins only one vshop user
/∗∗∗/
bdanev
danev
drop tab l e VSHOPUSERS
drop tab l e VSHOPACCOUNT
drop tab l e VSHOPTRANSACTIONS

cr ea t e tab l e VSHOPUSERS(
accountid varchar (10) ,
p in id varchar (4)
)

c r ea t e tab l e VSHOPACCOUNT(
accountid varchar (10) ,
customername varchar (10) ,

A.5 Source code for the Interconnections 64

cur r entba lance number (38 , 2) ,
primary key (accountid)
)

c r ea t e tab l e VSHOPTRANSACTIONS (
accountid varchar (10) ,
t r an s a c t i on da t e date ,
d e s c r i p t i o n varchar (50) ,
amount number (38 , 2)
)

i n s e r t i n to VSHOPUSERS
va lues (’ 1235 ’ , ’ 1 235 ’)

i n s e r t i n to VSHOPACCOUNT
values (’ 1235 ’ , ’ VShop ’ , 2 0 0 . 4 5)

i n s e r t i n to VSHOPTRANSACTIONS
va lues (’1235 ’ , ’24 −NOV−02 ’ , ’ Achat BestBuy ’ , 2 0 0 . 3 4)

A.5 Source code for the Interconnections

A.5.1 InterServerMsg and subclasses

Listing 22: InterServerMsg.java

import java . lang . ∗ ;
import java . i o . ∗ ;

pub l i c ab s t r a c t c l a s s InterServerMsg implements S e r i a l i z a b l e {
publ i c InterServerMsg () {
}

publ i c void printDebug () {
System . out . p r i n t l n (”Unknown Inter s e rverMsg . ”) ;
}

}

Listing 23: UserPurchaseMsg.java

import java . lang . ∗ ;
import java . i o . ∗ ;

pub l i c c l a s s UserPurchaseMsg extends InterServerMsg implements S e r i a l i z a b l e {
pr i va t e Str ing cl i entFul lName ;
p r i va t e Str ing cl i entAccountNo ;
p r i va t e Str ing vShopBankIP ;
p r i va t e Str ing vShopAccountNo ;
p r i va t e Str ing a r t i c l e ;
p r i va t e f l o a t p r i c e ;
p r i va t e i n t t ransact i onID ;
p r i va t e Str ing shopIP ;

pub l i c UserPurchaseMsg(Str ing name , Str ing accNo , Str ing vshopbankIp , Str ing
vshopaccno , Str ing art , f l o a t p , i n t trans , Str ing shop) {

cl i entFul lName = name ;
c l i entAccountNo = accNo ;
vShopBankIP = vshopbankIp ;
vShopAccountNo = vshopaccno ;
a r t i c l e = ar t ;
p r i c e = p ;
t ransact i onID = trans ;
shopIP = shop ;

65 Mobile Payment

}

publ i c void printDebug () {
System . out . p r i n t l n (”UserPurchase : ”) ;
System . out . p r i n t l n (” Cl i ent Name : ” + cl i entFul lName) ;
System . out . p r i n t l n (” Cl i ent Acc : ” + cl i entAccountNo) ;
System . out . p r i n t l n (” Shop BankIp : ” + vShopBankIP) ;
System . out . p r i n t l n (” Shop AccNo : ” + vShopAccountNo) ;
System . out . p r i n t l n (” A r t i c l e : ” + a r t i c l e) ;
System . out . p r i n t l n (” Pr i ce : ” + Str ing . valueOf (p r i c e)) ;
System . out . p r i n t l n (” TransID : ” + Str ing . valueOf (t ransact i onID)) ;
System . out . p r i n t l n (” ShopIP : ” + shopIP) ;
}

publ i c Str ing getClientName () {
r e turn cl i entFul lName ;
}

publ i c Str ing getClientAccountNo () {
r e turn cl i entAccountNo ;
}

publ i c Str ing getVshopBankIP () {
r e turn vShopBankIP ;
}

publ i c Str ing getVshopAccountNo () {
r e turn vShopAccountNo ;
}

publ i c Str ing g e tA r t i c l e () {
r e turn a r t i c l e ;
}

publ i c f l o a t g e tP r i c e () {
r e turn p r i c e ;
}
publ i c i n t getTransact ionID () {

r e turn transact i onID ;
}

publ i c Str ing getShopIP () {
r e turn shopIP ;
}

}

Listing 24: ConfirmationMsg.java

import java . lang . ∗ ;
import java . i o . ∗ ;

pub l i c c l a s s ConfirmationMsg extends InterServerMsg {
pr i va t e i n t t ransact i onID ;

pub l i c ConfirmationMsg (i n t id) {
t r ansact i onID = id ;
}

publ i c i n t getTransact ionID () {
r e turn transact i onID ;
}

A.5 Source code for the Interconnections 66

publ i c void printDebug () {
System . out . p r i n t l n (”TransID : ” + Str ing . valueOf (t ransact i onID)) ;
}

}

Listing 25: BankPaymentMsg.java

/∗ ∗∗∗
f i l e name : BankPaymentMsg . java
purpose : Object that i s exchanged between the User Bank and the
Vshop Bank
∗∗∗ ∗/
import java . lang . ∗ ;
import java . i o . ∗ ;
pub l i c c l a s s BankPaymentMsg extends InterServerMsg {

pr i va t e Str ing vShopAccountNo ;
p r i va t e Str ing a r t i c l e ;
p r i va t e f l o a t p r i c e ;
p r i va t e i n t vshopTransactionID ;
p r i va t e Str ing vshopIP ;
pub l i c BankPaymentMsg(Str ing vshopAccountNo , Str ing art , f l o a t p , i n t id , Str ing

v) {
vShopAccountNo = vshopAccountNo ;
a r t i c l e = ar t ;
p r i c e = p ;
vshopTransactionID = id ;
vshopIP = v ;
}

publ i c void printDebug () {
System . out . p r i n t l n (”BankPayment : ”) ;
System . out . p r i n t l n (” Vshop Acc : ” + vShopAccountNo) ;

System . out . p r i n t l n (” A r t i c l e : ” + a r t i c l e) ;
System . out . p r i n t l n (” Pr i ce : ” + Str ing . valueOf (p r i c e)) ;
System . out . p r i n t l n (” VshopTransactionID : ”+ Str ing . valueOf (vshopTransactionID)) ;
System . out . p r i n t l n (” Vshop IP : ” + vshopIP) ;
}

publ i c Str ing getVshopAccountNo () {
r e turn vShopAccountNo ;
}

publ i c Str ing g e tA r t i c l e () {
r e turn a r t i c l e ;
}

publ i c f l o a t g e tP r i c e () {
r e turn p r i c e ;
}

publ i c i n t getVshopTransactionID () {
r e turn vshopTransactionID ;
}

publ i c Str ing getVshopIP () {
r e turn vshopIP ;
}

}

67 Mobile Payment

A.5.2 SSLClient and classes using it

Listing 26: SSLClient.java

import java . i o . ∗ ;
import java . net . ∗ ;
import javax . net . s s l . ∗ ;
import javax . net . ∗ ;

pub l i c c l a s s SSLClient {
publ i c SSLClient (Str ing dest , i n t port , InterServerMsg msg) {

SSLSocket sock = nu l l ;
t ry {

/∗ Connect to s e r v e r ∗/
SSLSocketFactory s s lFac t = (SSLSocketFactory) SSLSocketFactory . getDefau l t () ;
sock = (SSLSocket) s s lFac t . c r eateSocke t (dest , port) ;

/∗ Create output and input streams ∗/
ObjectOutputStream oos = new ObjectOutputStream (sock . getOutputStream ()) ;
Buf feredReader in = new Buf feredReader (new InputStreamReader (sock .

getInputStream ())) ;

/∗ Send a message ∗/
oos . wr i teObj ect (msg) ;

/∗ Get back acknoledge ∗/
System . out . p r i n t l n (in . readLine ()) ;

/∗ Close connect i on ∗/
in . c l o s e () ;
sock . c l o s e () ;
} catch (EOFException e) {

System . out . p r i n t l n (”EOFException ? ”) ;
} catch (Exception e) {

System . out . p r i n t l n (e) ;
}
}

}

Listing 27: testClient.java

import java . lang . ∗ ;

pub l i c c l a s s t e s tC l i e n t {
publ i c s t a t i c void main (Str ing [] a rgs) throws Exception {

i f (a rgs . l ength != 2) {
System . out . p r i n t l n (”Usage : java t e s tC l i e n t host port ”) ;

} e l s e {
Str ing des t = args [0] ;
i n t port = In t ege r . valueOf (args [1]) . intValue () ;

System . out . p r i n t l n (”Trying to connect to ” + des t + ” on port ” + Str ing .
valueOf (port)) ;

ConfirmationMsg c = new ConfirmationMsg (1) ;
SSLClient s = new SSLClient (dest , port , c) ;
System . out . p r i n t l n (”MSG SENT ! ! ! ”) ;

}
}

}

A.5 Source code for the Interconnections 68

Listing 28: SSLUserPurchase.java

import java . i o . ∗ ;
import java . net . ∗ ;
import javax . net . s s l . ∗ ;
import javax . net . ∗ ;

/∗ Sends a message to a s e r v e r . used from vshop to bank ∗/
/∗ usage : java SSLUserPurchase des t Ip port UserName AccountNo VShopAccountNo

VShopBankIP a r t i c l e p r i c e ∗/

pub l i c c l a s s SSLUserPurchase {
publ i c s t a t i c void main (Str ing [] a rgs) throws Exception {

Str ing des t = args [0] ;
i n t port = In t ege r . valueOf (args [1]) . intValue () ;
f l o a t p r i c e = Float . valueOf (args [7]) . f l o a tVa l ue () ;
i n t transID = Intege r . valueOf (args [8]) . intValue () ;

/∗ send message ∗/
UserPurchaseMsg msg = new UserPurchaseMsg(args [2] , a rgs [3] , a rgs [4] , a rgs [5] ,

a rgs [6] , p r i ce , transID , args [9]) ;
SSLClient c = new SSLClient (dest , port , msg) ;
}

}

Listing 29: SSLBankPayment.java

/∗ ∗∗∗
f i l e name : SSLBankPayment
purpose : Object that i s exchanged between the User Bank and the
Vshop Bank in SSL mode
∗∗∗ ∗/
package ch . cmu . webproject ;
import java . i o . ∗ ;
import java . net . ∗ ;
import javax . net . s s l . ∗ ;
import javax . net . ∗ ;

pub l i c c l a s s SSLBankPayment {
publ i c s t a t i c void main (Str ing [] a rgs) throws Exception {

Str ing des t = args [0] ;
i n t port = In t ege r . valueOf (args [1]) . intValue () ;
Str ing vshopAccountNo = args [2] ;
S t r ing a r t i c l e = args [3] ;
f l o a t amount = Float . valueOf (args [4]) . f l o a tVa l ue () ;
i n t vshoptrans id = In t ege r . valueOf (args [5]) . intValue () ;
Str ing vshopIP = args [6] ;

/∗ send message ∗/
BankPaymentMsg msg = new BankPaymentMsg(vshopAccountNo , a r t i c l e , amount ,

vshoptrans id , vshopIP) ;
SSLClient c = new SSLClient (dest , port , msg) ;
}

}

Listing 30: SSLConfirmation.java

/∗ ∗∗∗
f i l e name : SSLConfirmation
purpose : Secure con f i rmat i on sent from the c l i e n t bank to the VShop
After t h i s message r e c e i v ed in the Vshop , the Vshop can proceed sh ipp ing
the product

69 Mobile Payment

∗∗∗ ∗/
import java . i o . ∗ ;
import java . net . ∗ ;
import javax . net . s s l . ∗ ;
import javax . net . ∗ ;

pub l i c c l a s s SSLConfirmation {
publ i c s t a t i c void main (Str ing [] a rgs) throws Exception {

Str ing des t = args [0] ;
i n t port = In t ege r . valueOf (args [1]) . intValue () ;
i n t t r ansact i onID = Intege r . valueOf (args [2]) . intValue () ;

/∗ send message ∗/
ConfirmationMsg msg = new ConfirmationMsg (transact i onID) ;
SSLClient c = new SSLClient (dest , port , msg) ;
}

}

A.5.3 SSLServer, ServerThread and subclasses

Listing 31: SSLServer.java

/∗ ∗∗∗
f i l e name : SSLServer . java
purpose : c r ea t e a SSL on s e r v e r s i d e to communicate with c l i e n t
∗∗∗ ∗/
import java . i o . ∗ ;
import java . lang . ∗ ;
import java . net . ∗ ;
import java . s e c u r i t y . KeyStore ;
import javax . net . ∗ ;
import javax . net . s s l . ∗ ;
import javax . s e c u r i t y . c e r t . X509Cer t i f i c a t e ;

pub l i c c l a s s SSLServer {
pr i va t e SSLServerSocket l i s t e nS o ck e t ;
p r i va t e i n t port ;
p r i va t e Class s e r v e r th r ead ;

pub l i c SSLServer (i n t p , Class s) {
port = p ;
s e r v e r th r ead = s ;
t ry {

SSLServerSocketFactory s s lSrvFact = (SSLServerSocketFactory)
SSLServerSocketFactory . getDefau l t () ;

l i s t e nS o c k e t = (SSLServerSocket) s s lSrvFact . c r ea t eSe r v e r Socke t (port) ;
} catch (Exception e) {

System . out . p r i n t l n (e) ;
r e turn ;

}
whi le (t rue) {

t ry {
SSLSocket c l i en tSock = nu l l ;
System . out . p r i n t l n (” Server i s ready and l i s t e n i n g on port ” + Str ing . valueOf (

port)) ;
c l i en tSock = (SSLSocket) l i s t e nS o c k e t . accept () ;
ServerThread ns = (ServerThread) s e r v e r th r ead . newInstance () ;
ns . setSock (c l i en tSock) ;
ns . s t a r t () ;

A.5 Source code for the Interconnections 70

} catch (Exception e) {
System . out . p r i n t l n (e) ;
continue ;
}

}
}

}

Listing 32: ServerThread.java

import java . lang . ∗ ;
import java . net . ∗ ;
import java . i o . ∗ ;
import javax . net . s s l . ∗ ;

pub l i c ab s t r a c t c l a s s ServerThread extends Thread {
SSLSocket c l i en tSock ;
InterServerMsg msg ;

pub l i c void setSock (SSLSocket s) {
c l i en tSock = s ;
}

publ i c void run () {
/∗ get message ∗/
try {

System . out . p r i n t (”Received a connect i on from ” + c l i en tSock . get InetAddres s () .
getHostName ()) ;

System . out . p r i n t l n (” , the c l i e n t port i s ” + Str ing . valueOf (c l i en tSock .
getPort ())) ;

/∗ Create Streams ∗/
ObjectInputStream o i s = new ObjectInputStream (c l i en tSock . getInputStream ()) ;
PrintStream os = new PrintStream (c l i en tSock . getOutputStream ()) ;
/∗ get a message (as a java ob j e c t) ∗/
Object interServerMsg = o i s . readObject () ;
Class c = Class . forName (” InterServerMsg ”) ;
i f (! c . i s I n s t a n c e (interServerMsg)) {

System . out . p r i n t l n (”Received non InterServerMsg ! ”) ;
os . p r i n t l n (”Received non InterServerMsg ! ”) ;
os . c l o s e () ;
c l i en tSock . c l o s e () ;
} e l s e {

((InterServerMsg) interServerMsg) . pr intDebug () ;
/∗ send ok ∗/
os . p r i n t l n (”ok”) ;
os . c l o s e () ;
c l i en tSock . c l o s e () ;
msg = (InterServerMsg) interServerMsg ;
handleMsg () ;
}

} catch (EOFException e) {
System . out . p r i n t l n (”Connection c l o s ed (EOF detected) ”) ;

} catch (Exception e) {
System . out . p r i n t l n (”Connection c l o s ed due to e r r o r s . ”) ;
System . out . p r i n t l n (e) ;

}

}

publ i c void handleMsg () {
}

71 Mobile Payment

}

Listing 33: testServer.java

import java . s q l . ∗ ;
import java . lang . ∗ ;
import java . i o . ∗ ;

pub l i c c l a s s t e s tS e r v e r extends ServerThread {
publ i c s t a t i c void main (Str ing [] a rgs) throws Exception {

i f (a rgs . l ength != 1) {
System . out . p r i n t l n (”Usage : java t e s tS e r v e r port ”) ;

} e l s e {
i n t port = In t ege r . valueOf (args [0]) . intValue () ;
/∗ Open s e r v e r ∗/
try {

SSLServer s erv = new SSLServer (port , Class . forName (” t e s tS e r v e r ”)) ;
} catch (Exception e) {

System . out . p r i n t l n (e) ;
}

}
}

publ i c void handleMsg () {
msg . printDebug () ;
}

}

Listing 34: VshopServlet.java

import java . s q l . ∗ ;
import java . lang . ∗ ;
import java . i o . ∗ ;

pub l i c c l a s s VshopServlet extends ServerThread {
s t a t i c Connection con = nu l l ;
pub l i c s t a t i c void main (Str ing [] a rgs) throws Exception {

/∗ Open database ∗/
try {

Class . forName (”com . mysql . jdbc . Dr iver ”) . newInstance () ;
} catch (ClassNotFoundException e) {

System . e r r . p r i n t (”ClassNotFoundException : ”) ;
System . e r r . p r i n t l n (e . getMessage ()) ;
r e turn ;

} catch (I l l e ga lAcce s sExcep t i on e) {
System . out . p r i n t l n (e) ;
r e turn ;

} catch (In s tan t i a t i onExcep t i on e) {
System . out . p r i n t l n (e) ;
r e turn ;

}

/∗ Star t s e r v e r ∗/
SSLServer s erv = new SSLServer (15494 , Class . forName (”VshopServlet”)) ;
}

/∗ code c a l l e d each time a message a r r i v e s ∗/
pub l i c void handleMsg () {

t ry {
/∗ Process i t . . . ∗/
Class c = Class . forName (”ConfirmationMsg”) ;

A.5 Source code for the Interconnections 72

i f (! c . i s I n s t a n c e (msg)) {
System . out . p r i n t l n (”Received non ConfirmationMsg ! ”) ;
r e turn ;
}
i n t t r Id = ((ConfirmationMsg) msg) . getTransact ionID () ;
/∗ update database : remove from wai t ing l i s t and add to shipment l i s t ∗/
con = DriverManager . getConnect ion (” jdbc : mysql : // l o c a l h o s t /mysql ? user=root&

password=root ”) ;
Statement s = con . createStatement () ;
Str ing msql = ”DELETE FROM VSHOP.WAITING WHERE transact i onID=” + Str ing .

valueOf (t r Id) ;
s . executeUpdate (msql) ;
/∗ I ’m not checking i f trID e x i s t s in the vshop . . . Perhaps a check should be

done
at t h i s l e v e l too . ∗/

msql = ”INSERT INTO VSHOP.TOSHIP (transact i onID) VALUES (” + Str ing . valueOf (
t r Id) + ”) ” ;

s . executeUpdate (msql) ;
} catch (SQLException e) {

System . e r r . p r i n t l n (”Error in database ” + e) ;
r e turn ;

} catch (Exception e) {
System . out . p r i n t l n (e) ;
r e turn ;

}
System . out . p r i n t l n (”OK”) ;
}

}

A.5.4 Other classes used

Listing 35: CurrentDate.java

import java . u t i l . ∗ ;
pub l i c c l a s s CurrentDate {

pr i va t e Str ing currentDate ;

pub l i c CurrentDate () {
Calendar ca l = Calendar . g e t In s tance (TimeZone . getDefau l t ()) ;
St r ing DATEFORMAT = ”dd−MMM−yyyy” ;
java . text . SimpleDateFormat sd f =

new java . text . SimpleDateFormat (DATEFORMAT) ;
sd f . setTimeZone (TimeZone . getDefau l t ()) ;

currentDate = sd f . format (ca l . getTime ()) ;
}

publ i c Str ing getCurrentDate () {

r e turn currentDate ;
}

}

