
18-794 Pattern Recognition Theory - Licence Plate Recognition

Alexandre Alahi, Alok Menghrajani

1 Introduction

We are going to design and implement an algorithm
that takes raw car images and recognizes the licence
plate number. We will be asuming that the car is
stopped, but the environment can vary (day/night
time, distance/angle, front/back view, etc...)

We will work with Swiss licence plates, the reason
being the digits (4 to 6) are seperated from the two
letter state code. At first we will work on digit recog-
nition, and then later on, we will work on the state
codes.

The front licence plate is 300mm x 80mm. There
are two formats for the back: 500mm x 110mm and
300mm x 160mm. The plates are white, with the text
in black and the font is always the same.

2 Database

We are building the image database on our own. We
currently have over 50 pictures (we will take some
more) with at least one sample of every state and be-
tween 25 to 100 samples of every digit.

3 Tools

We are working with Matlab and it’s image process-
ing toolkit. At first we will enter the plate and digit
locations manually (we have already created an inter-
face that permanently saves the information entered).
If we have enough time, we will detect these positions
automatically by searching for a white quadrilateral
and checking intensity/pixel variances over the entire
image.

4 Image Preprocessing

Since our database is raw images, we are going to do a
lot of image preprocessing. Once we have the location
of the plate, we will be working with greyscale or binary
images, each pixel’s value being in the range 0.0 (black)
to 1.0 (white).

Among the ideas we have tried/thought:

- Enhance the contrast (this will allow us to seperate
the digits from the background, but requires a dy-
namic threshold)

- Normalize the brightness (by taking the mean of
the brightness and then multiplying every pixel by
0.5/mean)

- Smooth the edges (by removing small spures and fill-
ing small holes)

- Crop the digits so there are no white spaces arround
them (centering)

- Clustering the image (reduce the number of pixels
by doing an average over the neighbors)

- Stroke width normalization [1]

5 Feature Extraction

Our idea is to do a good job at the feature extraction
level, in order to reduce the burden on the classifier.

Among the ideas we have tried/tought:

- Histogram of pixels [2] (we got interesting results by
combining with pixel clustering)

- Quantity of pixels in concavity (our own idea)
- Edge detection (using predetermined patterns)
- Geometric moments (we haven’t fully looked at this

yet)
- Gabor filters and image correlations [3]

Using histogram of pixels along the x and y axis, we are
able to differentiate between half the digits (the ones
that caused trouble are 5, 6, 9, 8). We believe we will
get the right results by enhancing our simple image
preprocessing method and adding two more features
from the list above.

6 Classification

A lot of the papers we found use neural networks. We
even found some papers where no features were ex-
tracted and the neural network was fed in the images
(probably preprocessed). The major problem with neu-
ral networks is the quantity of training data needed.
We will therefore take an alternative approach.

Once we will have our features, we will reduce their
size by using PCA. We will then use a nearest neighbor
scheme to determine the digit.

7 Most interesting papers we found

[1] J. Hu, D. Yu, H. Yan: Algorithm for Stroke Width Com-
pensation of Handwritten Characters, Electronics Let-
ters, 21st Nov 1996, Vol.32, No.24.

[2] O.D. Trier, A.K. Jain, T. Taxt: Feature Extraction
Methods for Character Recognition - A Survey, 1995.

[3] T. Wakahara, Y. Kimura: Affine-Invariant Gray-Scale
Character Recognition Using GAT Correlation, IEEE
2000.

[4] G. Srikantan, D. Lee, J.T. Favata: Comparison of Nor-
malization Methods for Character Recognition, IEEE
1995.

Example of a raw image and the different
formats for the plates.


