
Nov 2003

Special thanks to Cédric Gaudin, Stéphane
Magnenat, Julien Pilet and Damien Baumann
for their continuous support.
To Miljan Vuletic and all the LAP professors
without whom nothing would have happened.
To Nicolas Blanc for his help.

RokEPXA Developement Environment From Scratch

Contents

1 Introduction 1

1.1 Notes . 2

2 Hardware Configuration for the Rokepxa 2

2.1 Notes . 2

3 Host System Configuration 2

4 Building the Toolchain 3

4.1 Modifying the Makefile . 3

4.2 Setting the kernel source path 4

4.3 Running buildroot . 4

4.4 Modifying the uClibc files . 4

4.5 Running Buildroot . 5

4.6 Notes . 5

4.7 Modifying the Busybox config 6

5 Linux Kernel, version 2.6.0-test11-rmk1-rokepxa1 8

5.1 Patching the Kernel . 8

5.2 Configuring . 8

5.3 Notes . 11

6 File System, ext2 format 11

6.1 Creating . 12

6.2 Mounting . 12

6.3 Unmounting . 12

6.4 Content . 12

6.5 Notes . 13

7 Muboot 14

7.1 Notes . 14

8 Flasher 14

9 Minicom 15

10 Jelie 15

11 Redboot 16

11.1 Installation . 16

11.2 Using . 16

11.3 Notes . 17

RokEPXA Developement Environment From Scratch

12 Network 17

12.1 Notes . 17

13 Intermediate Testing 17

13.1 Notes . 18

14 Kaffe, version 1.1.3 with custom patch 18

14.1 Compiling x86kaffe . 18
14.2 Compiling armkaffe . 19
14.3 Notes . 19

A Overall view ii

1 RokEPXA Developement Environment From Scratch

1 Introduction

Embedded systems are small computers that typically don’t have a lot
of memory. They usually also don’t have keyboards or screens, so they
communicate with the outside world using vt over the parallel port or telnet
over the ethernet.

The goal of this document is to help you install Linux and some ba-
sic tools on such a system. This document is specifically written for the
RokEPXA developped at EPFL, Switzerland; some part will probably also
be useful for other architectures. This document is not a reference manual
for the RokEPXA. When writting this document, we were migrating from
linux 2.4.23 (which had bugs that severly affected us) to linux 2.6.0 (which
was still in development phase). This means that recompling these tools in
a couple of months will be very different from what we did.

This document will hopefully be extremly useful to understand how to
use the development environment. The CD-ROM included with this report
contains a complete, compiled and tested environment.

RokEPXA is designed for mobile robots, and has a really interesting ar-
chitecture (Altera’s EPXA); it combines two types of systems: an ARM922T
microprocessor and a FPGA. This means while the arm microprocessor is
running Linux and user programs like Java code, the FPGA can be special-
ized for tasks like controlling the robot’s motors, doing image processing on
camera input, serving as a network adapter or usb port, performing crypto-
graphic calculations, etc...

RokEPXA is connected to the desktop machine (Linux development ma-
chine) in three ways:

• serial port - used for the vt terminal and also to transfer files from
Redboot.

• parralel port - used for transfering Redboot via the JTag interface.

• ethernt connection - used for highspeed file transfer and development.

Since we had no hard disks, we created a mini Linux that we saved on the
ROM (we have 8MB of ROM). While booting, this Linux will use a ramdisk,
that is a virtual hard disk that lives in the RAM (we have 64MB of RAM).
This mini Linux is what we transfer from Redboot. Once this system boots,
it reprograms the FPGA in order to support the ethernet. We can then
mount a remote file system and start working. (Besides transfer speed, the
network file system also allows you to permanently save data across reboots).

After the development phase is over, you can put everything you need
in the ROM and remove all the debugging features; this way you’ll have a
self-contained system.

RokEPXA Developement Environment From Scratch 2

1.1 Notes

1. You will often need root privileges on the desktop machine. You can
either use the sudo command to gain these priviledges or login as root.

2. If you intend to use the same scripts as us, you should try to keep the
same file names.

3. We noticed that newer versions of software sometimes create problems.
If you want to avoid going through installation problems, you should
stick to the same software versions as we had.

2 Hardware Configuration for the Rokepxa

The RokEPXA can be configured in different ways. The basic configu-
ration is the power supply card, main card and ethernet adapter. Make sure
you have the serial, parallel and rj45 (ethernet) cables connected.

Also check the jumpers are set correctly:

• W1, W2, W4 are set.

• W3 musn’t be set. (So that we can access the flash ?)

2.1 Notes

1. You can either directly connect the rj45 cable to the desktop machine
using a cross-cable, or you can use a normal cables and a hub.

3 Host System Configuration

Here is the list of tools you will need on the desktop machine:

• gcc - 2.95.4

• ld - 2.12.90.0.1

• ldd - 2.2.5

• autoconf - 2.58

• automake - 1.4-p4

• minicom - (1.83.1 ?)

• lrzsz (for file transfer in minicom).

3 RokEPXA Developement Environment From Scratch

4 Building the Toolchain

In order to generate code for the ARM processor, you will need a cross-
compiler; a special version of gcc that will run on your desktop machine but
generate code for the embedded architecture. The cross-compiler and some
other tools that you will need are called a toolchain.

The compiler we will use is called uclibc. It is similar to gcc, except that
the it’s libary is significantly smaller in size.

We will also create a native toolchain (a compiler that will run and
generate code for ARM).

We will use a script called buildroot (the script is actually a huge number
of files kept in the directory buildroot/) to build our toolchains. This script
can be downloaded from a CVS:
cvs -d:pserver:anonymous@uclibc.org:/var/cvs login
cvs -z3 -d:pserver:anonymous@uclibc.org:/var/cvs co -P buildroot

The buildroot script is great if it works (because it does a LOT of stuff).
It can become really difficult to use if you run into problems. This is why we
recommend that you use the same version as we did (the version included
on our CD-ROM is patched/fixed).

The script will automatically download a couple of packages from the
internet. Since our script was designed for kernel 2.4, we downloaded linux
kernel 2.6.0 and told the script to use our kernel headers.

Make sure you have a clean PATH variable. The script might otherwise
get confused.

4.1 Modifying the Makefile

The first thing you will have to modify is the buildroot/Makefile. We will
tell the script that we are using an ARM processor. For some weird reason,
floating point emulation (called soft float) doesn’t work. So we will compile
with hard float enabled, and we will later enable floating point emulation at
the kernel level.

We tried to compile strace (a very useful tool), but ran into multiple
problems. We believe the next versions of the buildroot scripts will fix these
problems.

Here is the list of things we modified. If you use a newer version of the
script, you will have to compare your configuration with our’s.

• ARCH:=arm

• USE UCLIBC SNAPSHOT:=false

• USE BUSYBOX SNAPSHOT:=false

RokEPXA Developement Environment From Scratch 4

• BUILD WITH LARGEFILE:=false
(you might want to consider setting true here due to bugs in various
software like strace)

• TARGETS+=gcc3 3 target

• TARGETS+=ncurses ncurses-headers # for gdb support

• TARGETS+=gdb

• SOFT FLOAT:=false

• remove tinylogin

You must select TARGETS+=system-linux instead of TARGETS+=kernel-
headers if you downloaded linux yourself.

4.2 Setting the kernel source path

You must set the folloing in buildroot/make/system-linux.mk : LINUX SOURCE=linux-
2.6.0-test11-rmk1/

4.3 Running buildroot

You must run the buildroot script once in order to download uClibc.
You will then need to fix some problems the the uClibc config and rerun the
buildroot script.

cd buildroot/
make

4.4 Modifying the uClibc files

You must set the following in buildroot/uClibc.config and buildroot/uClibc.config-
locale: UCLIBC HAS SYS SIGLIST=y

There were some problems with missing system calls in linux 2.6.0 (eg:
create module and get kernel syms was removed). Some software (like busy-
box) were written to support both versions of linux. Other code (like uclibc)
doesn’t work with 2.6.0. These problems can be solved by using “clean”
headers (which are unavailable right now, when we are writing these lines).

If you run into similar problems, you can take our fixed create modules.c
and syscalls.c.

You must copy asm-generic from the linux/include folder to buildroot/build arm/staging dir/include.
Same thing must be done for the folder buildroot/build arm/uClibc-0.9.24/include.

There is a bug in include/features.h due to a missing #define user.
(Remember the include/ directory is copied in 3 places, so you must fix the
bug everywhere).

5 RokEPXA Developement Environment From Scratch

In ioperm.c you must replace BUS ISA by CTL BUS ISA.

Make sure that the file buildroot/source/uClibc.config has the line: UCLIBC HAS RPC=y

4.5 Running Buildroot

You can now run the Buildroot again.

Due to a bug in uClibc (which by default enables soft float when it is
creating a cross compiler for the arm), the compilation of the buildroot script
is done in two steps.

The script will ask you which specific arm you are using. We answered:
6. Arm 922T

When the script tries to create uClibc, you will get an error message like
this:
buildroot/build arm/staging dir/bin/arm-linux-ld: ERROR:
buildroot/build arm/staging dir/lib/gcc-lib/arm-
linux/3.3.2/crtbeginS.o uses hardware FP, whereas libpthread-0.9.23.so uses
software FP
File format not recognized: failed to merge target specific data of file

You must then delete: ARCH HAS NO FPU everywhere in the file build-
root/build arm/uClibc-0.9.23/extra/Configs/Config.arm and modify the file
buildroot/build arm/uClibc-0.9.23/.config :

• #ARCH HAS NO FPU=y

• #UCLIBC HAS SOFT FLOAT=y

• HAS FPU=y

You must then do make clean followed by make in the uClibc directory
and then make again in buildroot/.

Once the script finishes, you will have a folder containg files for the
target system in buildroot/build arm/root/, and the cross-compiler in build-
root/build arm/staging dir/.

!Make sure you add the staging dir to your path.

Don’t forget to copy buildroot/build arm/root/ to the NFS.

4.6 Notes

1. You can try to understand and solve why soft floating point (having a
compiler that generates the floating point code) doesn’t work.

RokEPXA Developement Environment From Scratch 6

2. If you get an error message like: /bin/sh: line1: no: command not
found then you need to update the gettext utility (you are probabably
missing msgfmt). You might also have to update autoconf to version
2.58 and automake.

3. In case something goes wrong and you need to rerun the buildroot
script, don’t use make clean. You should rather remove the directories:
build arm and toolchain build arm.

4. If you need to rebuilt Busybox (because you forgot to activate an
option) then do a make clean in buildroot/build arm/busybox-0.60.5/
and delete the buildroot/build arm/root/ folder. Then rerun the script
from buildroot/.

5. If you get an error like this:
buildroot/build arm/staging dir/lib/gcc-lib/arm-linux/3.3.2/../../../../arm-
linux/bin/ld: cannot open crt1.o: No such file or directory
collect2: ld returned 1 exit status
It means the script used the wrong linker, you need to clear your PATH
and start all over again.

4.7 Modifying the Busybox config

Busybox is a collection of Unix tools that allows you to have basic GNU
tools in a single small executable.

The buildroot script should create Busybox for you. You can also create
it manually. Download and decompress the sources. You must check in the
Makefile that you are going to use the right cross-compiler.

You might also have to set DOSTATIC to true in the Makefile (if you
don’t have a loader).

The config file lets you choose exactly what programs you want, so you
can minimize space usage. Here is what we used:

In busybox.config :

• remove CONFIG FEATURE 2 x MODULES

• remove CONFIG FEATURE QUERY MODULE INTERFACE

• add CONFIG FEATURE 2 6=y

• add CONFIG LSMOD, INSMOD, RMMOD

• remove FDISK, FDFLISH, FDFORMAT, ... because of a bug in scsi.h.

In busybox.Config.h:

• BB ASH, BB INIT, BB STTY, BB TTY
ASH is the shell, if you wish to, you can select an alternate one. INIT
is the first process, don’t know what will happen if this is desactived.

7 RokEPXA Developement Environment From Scratch

• BB AR, BB CP, BB ECHO, BB GREP, BB GUNZIP, BB GZIP, BB LN,
BB LS, BB MKDIR, BB MORE, BB MV, BB RM, BB RMDIR, BB TOUCH,
BB VI, BB WC, BB WHICH
Basic shell tools.

• BB INSMOD, BB LSMOD, BB MODPROBE, BB RMMOD
Tools required to load modules such as ethernet.

• BB MKNOD
Required to initialize the fpga.

• BB MOUNT, BB UMOUNT
Tools required to mount the NFS.

• BB IFCONFIG, BB PING, BB ROUTE, BB TELNET
Tools required for networking.

• BB BASENAME, BB DIRNAME, BB PWD
Tools that might be used by scripts.

You must also activate some features:

• #define BB FEATURE SH IS ASH
Depending on the shell you have choosen.

• #define BB FEATURE USE INITTAB
Default and recommended.

• #define BB FEATURE NFSMOUNT, BB FEATURE MOUNT FORCE
Support for remote NFS volumes.

• #define BB FEATURE NEW MODULE INTERFACE
Since we have a post 2.1 kernel.

• maybe enabling INSMOD VERSION CHECKING will allow checking
versions for modules (the last time we tried it, it didn’t work).

• #define BB FEATURE IFCONFIG STATUS
Useful for debugging.

• #define BB FEATURE IFCONFIG HW
This is important for us, since our fpga doesn’t assign a MAC address.

After compiling once, you need to fix the following files: include/lin-
ux/loop.h add #include ¡asm/posix types.h¿

RokEPXA Developement Environment From Scratch 8

5 Linux Kernel, version 2.6.0-test11-rmk1-rokepxa1

The Linux kernel that we used is 2.6.0-test11, with the rmk1 patch (a
patch specifically for ARM), and Christophe’s rokepxa patch. (Christophe’s
patch is actually based on Cédric’s old patch).

5.1 Patching the Kernel

man patch :-)

The rmk1 patch (www.arm.linux.org.uk) adds support for ARM based
linux.

The custom patch does the following:

• adds support for the ethernet (the cirrus module was removed in 2.6.0).

• corrects a bug in uart00 (the console freezes when you hit tab or some-
times other keys).

• fixes problems with pld epxa.c

• defines the RokEPXA architecture.

5.2 Configuring

Before compiling the kernel, you need to configure it. You can edit
the .config file, or use the make menuconfig command. We noticed that
sometimes the kernel doesn’t recompile correctly if only the .config file was
modified, so we recommend always running make menuconfig.

Here is the list of options that you should enable.

Code maturity level option −→

* Prompt for development and/or incomplete code/drivers

General setup −→

* System V IPC

Sysctl support (should be safe to disable, if you want to save 8KB
!)

Loadable module support −→

* Enable loadable module support

* Module unloading

* Forced module unloading (should be safe to disable).

9 RokEPXA Developement Environment From Scratch

� DISABLE Set version information on all module symbols
For some reason modules can’t be loaded (there is some sym-
bol mismatch) if this option is set. Probably due to the fact
that we are cross-compiling.

* Automatic Kernel module loading (should be safe to disable).

System type −→

ARM system type (RokeEPXA) −→

X RokEpxa

RokeEpxa −→

* Support for PLD device hotplugging (experimental)

General setup −→

* NWFPE math emulation
This option is needed because we don’t have any floating point
unit, and the JVM will require it.

* Kernel support for ELF binaries

* Kernel support for a.out binaries

* Preemptible Kernerl (EXPERIMENTAL)

! Default kernel command string:
“console=ttyUA0,115200 mem=64M root=/dev/ram0 ramdisk size=16384
initrd=0x2000000,987006”
This option is very important ! console=... enables the embedded
system to be controlled via a terminal, mem=... tells the kernel
how much RAM we have, root=... enables us to boot from the
RAM disk (since we don’t have any hard disks), initrd=... tells
the kernel where the initrd will be. The 987006 value is the file
system’s size. Each time you change the size of your file system,
you must change this value and recompile the kernel.

Block devices −→

* RAM disk support
We need this since we don’t have any hard disks.

4096 Default RAM disk size

* Initial RAM disk (initrd) support
We need this since we don’t have any hard disks.

Networking support −→

* Networking support

Networking options −→

RokEPXA Developement Environment From Scratch 10

* Unix domain sockets

* TCP/IP networking
We need this since we will mount a NFS.

* Network device support

Ethernet (10 or 100Mbit) −→

* Ethernet (10 or 100Mbit)

M Cirrus support
Depending on your hardware, you will need one of these
modules.
You must add this as a module, because the fpga needs
to be initialized for the ‘network card’ to exist. The fpga
will be initialized after the Linux has booted. The cirrus
module will then be loaded.

Input device support −→

* Serial i/o support

* Serial port line descipline

* Joysticks

* I-Force devices
just in case we have some extra time :-)

Character devices −→

* Unix98 PTY support

256 Maximum number of Unix98 PTYs in use (0-2048)

File systems −→

* Second extended fs support

* ROM file system support

Pseudo filesystems −→

* /proc file system support

* /dev file system support (OBSOLETE)

* Automatically mount at boot

* Debug devfs

* /dev/pts file system for Unix98 PTYs

Pseudo filesystems −→

* Compressed ROM file system support (Should be safe to dis-
activate)

Network File Systems −→

11 RokEPXA Developement Environment From Scratch

* NFS file system support

* Provide NFSv3 client support

Kernel hacking −→
You should enable everything as you will be working with a lot of
experimental code, and the kernel might crash.

You can now do make dep; make clean; make zImage; make modules;
make modules install.

The kernel is created in arch/arm/boot/zImage. The kernel modules are
created in /lib/modules/2.6.0-test11-rmk1.

5.3 Notes

1. Remember to recompile the kernel each time the file system’s size
changes. You can simply do a make zImage if you don’t change any-
thing else. I recommend changing the command string using make
menuconfig, as vi .config might not always work.

2. Your final kernel should be slightly less than 1 MB.

6 File System, ext2 format

You must create an initrd file system, that will be stored in the ROM
and loaded by the kernel when it boots. This initrd will be in ext2 format.
It is stored as a normal file on your desktop machine, but you can mount
it using the loopback device. Once mounted, you can transfer files into the
file system (just like any other Linux device).

Your file system shouldn’t be too small as you will need enough space to
store the kernel, modules, basic Linux tools (shell and various other tools)
and a JVM. On the other hand the bigger the file system, the longer it will
take to transfer it to the ROM (an operation that takes about 30 minutes
and that you normally should be doing only once, but you might have to do
it several times if things go wrong). The file system must also of course be
small enough to fit in the ROM (it will first be compressed). So in our case,
a 6 MB file system is a good choice.

The kernel needs to know the size of file system. You therefore need to
enter it in the kernel command (you can do this using make menuconfig).
The size that you need to enter is the file system’s compressed size. So you
can now do a ls -l initrd.ext2.gz and copy the file size into the kernel.

RokEPXA Developement Environment From Scratch 12

6.1 Creating

Although the buildroot script created a folder buildroot/build arm/root/
which contain most of the files your file system will need, you must recreate
a fresh file system.

There are two ways you can create the file system: grab an existing one
and modify it, or create one from scratch.

The file system we will create will use the ext2 format. It will be stored
as a normal file on your desktop machine, but you can mount it using the
loopback device.

First create the image file: dd if=/dev/zero of=initrd.ext2 bs=16M count=1.

Now convert it to an ext2 file system: sudo mke2fs -F -v -m0 -b 1024
initrd.ext2.

Finally you can gzip the initrd: gzip initrd.ext2

6.2 Mounting

To mount the file system you need to first extract it: gunzip initrd.ext2.gz

Create a folder where it will be mounted: mkdir fs

Finally mount it: sudo mount initrd.ext2 -f ext2 -o loop fs/

6.3 Unmounting

To unmount, you must do the reverse operation. sudo umount fs/

rmdir fs

gzip initrd.ext2

6.4 Content

This part is slighty tricky. The buildroot script create buildroot/build arm/root/
which contains most of the files you’ll need. Unfortunatly we need to strip
this folder down so it fits on our tiny system. Here is what we did:

• Removed share/

• Moved usr/lib/, usr/include/ and usr/arm-linux/ to the NFS

• Copied usr/bin/ to the NFS

• Removed the following files from usr/bin/ :
arm-linux-*, (everything that’s not a symlink), leave the LOADER !!!
(ld and ldd, enough). How big are the libaries?

• Copied lib/ to the NFS

13 RokEPXA Developement Environment From Scratch

You can copy buildroot/build arm/root/ but you must first save some
space: remove everything in share and copy the lib and include folders to
the NFS.

COPY libgcc s !!!

Here is the minimum content of the file system:

• Kernel modules
sudo mkdir -p fs/lib/modules
sudo cp -r /lib/modules/2.6.0-test11-rmk1 fs/lib/modules

• Busybox
You will learn more about Busybox in the next section.

• FPGA ethernet design file
The file is called rokepxa extcam3d.sbi. FIXME

• /etc
You must create the /etc directory and put in 3 files: fstab, inittab,
startup.

• /dev
You must create the /dev directory. HOW ? FIXME

6.5 Notes

1. It is a common mistake to tar.gz the file system. The file system should
only be gzipped.

2. The mytools/ directory contain scripts to mount and unmount the file
system.

3. Remember to change the kernel command option each time you modify
the file system’s content.

4. Sometimes simply mounting and unmounting a file system can change
it’s size.

5. It’s a common mistake to change the file size in the kernel command
line and forget to recompile the zImage.

6. If you remove a file, it won’t reduce the filesystem’s size unless you
recreate a fresh one (we haven’t found a way to zero the content of
deleted data, so the compression isn’t efficient).

7. Todo: modify buildroot so it creates a smaller root/.

8. Todo: modify buildroot so it puts the native compiler in a different
folder than /usr/bin.

RokEPXA Developement Environment From Scratch 14

7 Muboot

You are now almost ready to boot your mini system. You must still
create a boot loader. The boot loader is the very first piece of code that
gets run when a system boots. We used Muboot, which does a basic check on
the RAM and decompresses the kernel. The boot loader then hand over the
control to the kernel, which creates a ramdisk and mounts the file system.
It also displays and allows you to use the keyboard via vt (over the serial
cable).

The Muboot tool takes as input a zImage kernel image and a file system.
It puts them together and adds the boot loader code. The resulting file is
called flash boot rokepxa.bin:
cp /linux-2.4.19-rmk7-rokepxa4/arch/arm/boot/zImage /muboot/src/ cp ini-
trd.ext2.gz /muboot/src/initrd (Note: the initrd changes it’s name)
cd /muboot/src/
make clean
make

7.1 Notes

1. You can improve the boot loader so that the file system’s size is passed
to the kernel at boot time (and not with the kernel command method).
This way you won’t need to recompile the kernel each time the file
system’s content changes. You can also improve the boot loader by
supporting the bzImage format, which will decrease the image size.

2. There is a script in the mytools/ folder that creates the loader and
flasher.

8 Flasher

The flasher is a tool that allows you to copy the flash boot rokepxa.bin
into the ROM. This way whenever you reboot the rokepxa, you will always
have your Linux.

The rokepxa can be booted in two different ways: restart (which is per-
formed using the Jelie tool) which will reboot the machine using the RAM,
and reset (which can be performed usign the reset button, Jelie or by switch-
ing the card off and on) which will reboot the machine using the ROM.

The process to flash the ROM happens in two steps. The flasher takes
the flash boot rokepxa.bin and adds some code to copy write data to the
ROM. The resulting file is: flasher. This file is then copied to the RAM (this
process takes about 30 minutes) and the machine is restarted (boot from
RAM). The flasher will then be run and will copy the content of the RAM

15 RokEPXA Developement Environment From Scratch

(the flash boot rokepxa.bin) into the ROM. Once the process is terminated,
you can reset the card and you should be able to boot into Linux.

Here is how you prepare the flasher:
cp flash boot rokepxa.bin /flasher/src/flash image (Note: the file changes
it’s name)
cd /flasher/src/
make clean
make

9 Minicom

Minicom is a simple vt software that will allow you to communicate using
the serial port. It hasn’t got anything special, you can use any terminal
software as long as it supports vt100 at 11500 bauds.

Minicom has a few things to be aware off:

• Activate line wraps.

• You can clear the screen by typing ctrl-A followed by C.

• ctrl-A Z provides help.

10 Jelie

Jelie is a tool that will allow you to transfer data to the RAM. It can
also be used to reset or restart the rokepxa (this can be especially useful if
you are working remotly). The Jelie tool uses JTAGS.

Before launching Jelie you should run your terminal (eg: Minicom) in
another window.

There are prewritten scripts for Jelie (/jelie/scripts/), you should use
them.

To run jelie:
cd /jelie/
sudo ./test

Here are some basic commands:

• list
List all the commands. Make sure you have the commands starting
with epxa.

• expa configure
Initialize the rokepxa. You should execute this command before using
any other epxa commands. (The scripts usually do this for you).

• epxa resetcpu
Reset rokepxa (boots from RAM)

RokEPXA Developement Environment From Scratch 16

• expa restartcpu
Restart rokepxa (boots from ROM)

• source scripts/script name.je
Runs script stored in scripts/

To transfer the Redboot, just do: source scripts/redboot.je

11 Redboot

We use the Redboot bootloader (see www.redhat.com and sources.redhat.com/redboot/).

11.1 Installation

• Download jtag redboot.bin using Jelie at address 0 (this will load the
redboot ram image from address 0x30000).

• Download rokepxa redboot ram.bin to the RAM (using Jelie) at ad-
dress 0x30000.

• Reboot (don’t restart !)

• Minicom should be set to 57600 bauds.

• Transfer rokepxa redboot rom.bin to the RAM (load -r -b 0x1000000
followed by ctrl-A S -¿ select xmodem and select the file).

• fis init

• Transfer rokepxa redboot rom from ram to rom: fis create -b 0x1000000
-l size -r 0x40000000 -e 0x00000000 RedBoot

• fis lock RedBoot

• cache on

11.2 Using

• Transfer initrd (to be done once only): load -r -b 0x2000000...

• fis create -b 0x02000000 -l size -f 0x40120000 -r 0x02000000 initrd

• Transfer linux (to be done once only): load -r -b 0x00200000...

• fis create -b 0x00200000 -l size -f 0x40020000 -r 0x00200000 Linux26

• fis load initrd

• fis load Linux26

17 RokEPXA Developement Environment From Scratch

• exec

• Quickly switch back to 115’000 bauds !

11.3 Notes

1. todo: recompile redboot so that we don’t need to switch speeds.

12 Network

You will need network support for debugging purpose. Being able to
mount a NFS file system will allow you to quickly access files (don’t need
to create a new initrd and wait 30 minutes to copy it to the ROM). It will
also allow you to save files (since you are using a RAM disk, everything you
write to the RAM disk is lost if the system crashes/reboots).

If you compiled everything properly (enabled network support in the
kernel and added the tools in Busybox), then all you need to do is the
following after the kernel has booted:

Create the PLD device: /bin/mknod /dev/pld c 254 0.

Configure the PLD for ethernet support: /bin/cp /design/rokepxa extcam3d.sbi
/dev/pld.

Load the ethernet driver: /sbin/insmod cirrus.

Setup the network:
/sbin/ifconfig eth0 hw ether 90:00:00:10:10:10
/sbin/ifconfig eth0 192.168.0.2

Assuming that the nfs is configured in the fstab file, all there is left to
do is: mount /nfs.

12.1 Notes

1. You might notice that lsmod reports that the cirrus module is begin
used by 2. (This is ok ?).

2. If you want to unload and modify the fpga here is what you need to
do:
umount /nfs
ifconfig eth0 down
rmmod cirrus

13 Intermediate Testing

You can now check that everything is fine by mounting a remote file
system and running a typical hello world application.

RokEPXA Developement Environment From Scratch 18

You should now be able to run any compiled code on the rokepxa. Try
compiling a hello.c program on the desktop machine using uclibc. Make sure
you compile your test program as static:
echo “int main() {printf(“hello world
n”); return 0;” ¿ hello.c}
arm-linux-gcc -c hello.c
arm-linux-gcc –static -o hello hello.o

Copy the hello application to the NFS folder, mount the NFS on the
rokepxa and run the application. If everything went fine, “hello world”
should be displayed.

13.1 Notes

1. You can check that a file is compiled static: arm-linux-ldd file name

Kernel panic: No init found. Try passing init= option to kernel.

- check that you have busybox on the file system - check that busybox
is compiled static or that you have the right libraries in /lib

Out of blocks (decompressing initrd), means there is a mismatch in the
kernel command and file system size. The kernel command is displayed right
after the kernel is decompressed.

14 Kaffe, version 1.1.3 with custom patch

The last step is to compile the JVM. We recommend using the latest
version of Kaffe, as the production version (1.0.7) is very old and doesn’t
compile easily.

We had to fix a bug with the JIT (just in time) engine. The patch will
be included in 1.1.4.

Kaffe is compiled in two steps: first you will compile it for your desktop
machine (this will generate a folder called kaffeh). Then you can cross-
compile for the embedded system.

14.1 Compiling x86kaffe

Decompress the kaffe sources and run:
./configure –prefix=/home/.../x86kaffe/ –enable-pure-java-math Note: the
prefix must be absolute
make
make install

You should test that the jvm is working by compiling hello.java and
running it: x86kaffe/bin/javac hello.java
x86kaffe/bin/java hello

19 RokEPXA Developement Environment From Scratch

14.2 Compiling armkaffe

If you are using an older version of kaffe, you might have trouble with
some files having asm instructions on multiple lines. You must add \’s
manually.

(Copy the x86kaffe/libraries/javalib/rt.jar to /tmp/rt.jar).
You must now clean the source directory:

make clean rm config.cache
Setup the cross-compiler and build armkaffe:

Make sure you have arm-linux-gcc in your path !
KAFFEH=/home/.../x86kaffe/bin/kaffeh ./configure –host=arm-linux –build=i386-
linux –enable-pure-java-math –without-x –with-threads=pthreads –with-engine=jit
–prefix=/usr/kaffe

Before continuing you need to edit the main Makefile and remove test
from the subdirs.

make
make install

Once the build is sucessful, you should reset the environment (close the
terminal and open a new one).

Now test armkaffe by running hello.class (generated by x86kaffe) on the
arm, and also by recompiling hello.java on the arm.

14.3 Notes

1. We couldn’t compile Kaffe with jthreads (that’s why we use pthreads).

2. JIT3 isn’t ported to ARM, that’s why we specify JIT (JIT3 is the
default).

3. You could try to compile Kaffe on the arm iteself, since we have a
native toolchain.

i RokEPXA Developement Environment From Scratch

RokEPXA Developement Environment From Scratch ii

A Overall view

